
PI AND ARCHIMEDES POLYGON METHOD
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1. Introduction

Archimedes was not the �rst to use a method involving polygons. Other Greek mathematicians before him had
attempted to use the area of polygons inside a circle to approximate π. However he was the �rst to use the perimeter
of the polygon in an attempt to �nd the magic ratio between the diameter and the circumference. And his was
the primary method that mathematicians from Europe to Middle-East to China used to �nd the digits of π for
the next 1900 years. I sought to convert his geometric formulas into simpler iterations, so that the method as a
whole is easier to analyze. Then I seek to �gure out the complexity of his method, and make a stab at how many
calculations van Ceulen must have computed to get 35 digits of π using the method.

2. Upper Bound for Pi: Perimeter of a circumscribed Polygon

Before we start on Archimedes' proof, we �rst need to prove one of Euclid's theorems, though for our purposes
we only have to prove the su�cient statement.

Theorem 1. If a straight line bisects an angle of a triangle and cuts the base then the resulting segments of the

base have the same ratio as the remaining sides of the triangle.

Proof. If we have 4AOC and OD bisects ∠AOC, then CO
OA =CD

DA .
First thing we do is draw a line starting from C that is parallel to OD, and also extend AO so that the two lines

meet at E.

C

D

A O
E

Figure 2.1. 4AOC with the extra lines drawn in

Then:

m∠DOA = m∠CEA Corresponding angles

m∠COD +m∠DOA+m∠COE = 180 Supplementary angles

m∠OCE +m∠OEC +m∠COE = 180 Triangle

m∠COD +m∠DOA = m∠OCE +m∠OEC Substitution

4COE is isoceles Sub. and def. of isos. tri.

With AA similarity Theorem, 4CEA is similar to 4DOA. Therefore CA
AE = DA

AO ⇒ CA
DA = AE

AO . CA = CD+DA
and AE = AO +OE.

CD +DA

DA
=

AO +OE

AO
Sub.

CD

DA
=

OE

AO
Distrib. then subt.

CD

DA
=

CO

OA
Isosceles tri.

�

2.1. Original Geometric Method of Archimedes. We can now move on to Archimedes's geometric method/proof
to measure pi. We shall start with the circumscribed polygons.

Date: May 28th, 2013.
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C
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E

A O B

F

Figure 2.2. Circumscribed Case

Look to Figure 2.2. Let AB be the diameter, let O be the center, let AC be tangent at A; and let the
∠AOC be one-third of a right angle or π

6 . First it is important to note that assuming CF = 2 ∗ CA, then

CF is the side of a circumscribed hexagon (Figure 2.3). The OA
AC ratio is very important, because that is the

ratio of Half of the diameter (radius)
Half of the side of a circumscribed polygon which is equivalent to Diameter

Length of a side of a circumscribed polygon . We take the

reciprocal and multiply the result by the number of sides and we get Perimeter of circumscribed polygon
Diameter - an upper bound

for a value of π, since π is the ratio= Circumference
Diameter .

O

C

A

D

F

Figure 2.3. Circumscribed Hexagon and 12-gon

Before I give you Archimedes's geometric method, it is helpful to keep in mind what he is attempting to do. He
starts with a known ratio for OA

AC and OC
CA . Then he bisects ∠AOC with OD, and using the initial ratios, he gets

OA
AD . Since he doesn't just want to stop at OA

AD , he needs to �nd OD
DA , which serves the same role asOC

CA . Then he
could iteratively use his method over and over, bisecting the triangle again and again, which means the polygon
that the ratio pertains to is of greater n sides (double the number of sides to be exact, because you bisect the angle
each time).

Suppose we bisect ∠AOC using OD and make D stop at AC (Figure 2.2). Using Euclid's theorem CD
DA = CO

OA

Archimedes makes a brilliant observation. From this (or from our proof of Euclid's), he �gures out CD+DA
DA =

CO+OA
OA = CA

DA⇒ CO+OA
CA = OA

DA . Therefore:

(2.1)
CO

CA
+

OA

AC
=

OA

AD

Additionally Archimedes found a way to get OD
DA by using the Pythagorean Theorem.

OA2 +AD2 = OD2

⇒OA2

AD2
+ 1 =

OD2

DA2

(2.2)

√
OA2

AD2
+ 1 =

OD

DA

Archimedes' proof does not assume to know what m∠AOC was.
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Archimedes starts with an approximation. OA
AC > 265

153 . Notice how
OA
AC = cot(π6 ). We, as mathematicians endowed

with the knowledge of trigonometry, know that OA
AC =

√
3. Archimedes knew that

√
3 > 265

153 . And this is okay

because then our approximation for the reciprocal AC
OA ( 153265 ) is bigger than the actual value (

1√
3
). Since the reciprocal

times the number of sides (in this case 6) is an upper bound, Archimedes' approximation cannot be incorrect. You
end up with an upper bound that is slightly bigger than the actual upper bound, had you been exact. And he
knows that OC

CA = 2
1 = 306

153 , for us this is csc(
π
6 ) =

1
sin(π

6 ) . Use (2.1):

306

153
+

265

153
<
OA

AD
571

153
<
OA

AD

Notice how if we only wanted to �nd the ratio Perimeter of a circumscribing regular 12-gon
Diameter , then we could stop here and

get that ratio by taking 12 ∗ AD
OA (Figure 2.3). This is because we bisected ∠AOC, which means m∠DOA = π

12 .

Also notice how OA
AD = cot( π

12 ). Now to get OD
DA , use (2.2)

Archimedes once again uses bounded approximations. OA2

AD2 + 1 > 349450
23409 ⇒

√
OA2

AD2 + 1 >
√
349450
153 . Archimedes

knew that
√
349450 > 591 1

8 . So
OD
DA >

591 1
8

153 . Also notice how OD
DA = csc( π

12 ).

And bounding OD
DA and OA

AD with a lower bound is good because at the next step, when he bisects the4AOD again

by OE, by the same reasoning as before, OA
AE = OD

DA + OA
AD⇒ OA

AE >
591 1

8

153 + 571
153 =

1162 1
8

153 . So then the approximation
of the reciprocal is bigger than the real value.

All of this works inductively, because notice how we never had to depend on the speci�c values for AC, CO, OA,
or m∠AOC for the proof of the big statements (2.1 and 2.2)

Bisect again to get a smaller triangle 4AOE, part of a 24-gon circumscribed the circle. Then use OD
DA and OA

AD

and (2.1) to get OA
AE . Then use OA

AE and (2.2) again to �nd OE
EA . From our reasoning before it is easy to see that

Perimeter of a circumscribed regular 24-gon
Diameter = 24 ∗ AE

OA .
Archimedes does this bisection two more times (each time with an appropriate approximation) to get a triangle

that is a part of a regular 96-gon and its respective ratios. This is how he got his upper bound 3 1
7 for the value of

π.

2.2. The Trigonometric View on Archimedes Method for Upper Bound for Pi. At each step we noted
that the ratios we are using have trigonometric equivalents. For example, OA

AC is equal to cot(π6 ). We could use it

to �nd Perimeter of circumscribed 6-gon
Diameter , by taking the reciprocal and multiplying by 6. A similar thing happened for

OA
AD ; it equaled cot( π

12 ), and its reciprocal multipled by 12 was equal to Perimeter of circumscribed 12-gon
Diameter . This is due to

each bisection (or each step in the method) creating a triangle that is a part of double the number of sides polygon,

while cutting the angle in half. This eases us into the claim that Perimeter of a circumscribed regular n-gon
Diameter is equivalent

to ntan(πn ).

Proof. Let's say the circumscribed regular n-gon has vertices v1, v2, v3...vn. Since it's regular, I can arbitrarily label
consecutive vertices vi and vi+1 traveling from edge to edge in a cycle, without losing generality (the last edge
will be from vn to v1). The circle has center O. Some properties of regular circumscribed polygons include that
every edge is tangent to the circle at its midpoint1. Additionally, the radius and the tangent line are perpendicular
to each other. Therefore all 4viOvi+1 where 0 ≤ i ≤ n − 1, are congruent triangles, including 4vnOv1. Then
m∠viOvi+1 = 2π

n where 0 ≤ i ≤ n− 1. m∠vnOv1 = 2π
n .

That means tan(πn ) is equivalent to
Half of the side of a circumscribed polygon

Half of the diameter (radius) = Side of circumscribed polygon
Diameter . Multiply by

n and you get:

(2.3) ntan(
π

n
) =

Perimeter of a circumscribed regular n-gon

Diameter
�

For now let's call ntan(πn ) = UBn.
If you relook over the whole proof with a trigonometric view, you can see that Archimedes is proving some trig

identities. The OC
CA + OA

AC = OA
AD becomes:

(2.4) csc(θ) + cot(θ) = cot(
θ

2
)

1The apothem is the incircle's radius.
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Ov1

v2

pi/n

pi/n

v3

v4

v5v6

Figure 2.4. Circumscribed Hexagon

√
OA2

AD2 + 1 = OD
DA becomes:

(2.5)
√
cot2(θ) + 1 = csc(θ)

3. Lower Bound for Pi: Perimeter of a Inscribed Polygon

I could present the next section in terms of Archimedes' original geometric proofs, but now that it is clear that
Archimedes was actually dealing with trigonometry (very ahead of his time), we can walk through how Archimedes

arrived at the Perimeter of a inscribed regular n-gon
Diameter , using our known trig identities.

First I claim that Perimeter of an inscribed regular n-gon
Diameter = nsin(πn ).

Proof. Let's say the inscribed regular n-gon has vertices v1, v2, v3...vn. Since it's regular, I can arbitrarily label
consecutive vertices vi and vi+1 traveling from edge to edge in a cycle, without losing generality (the last edge will
be from vn to v1). The circle has center O. Each edge of the n-gon is a chord and they are all the same length.
Therefore each m∠viOvi+1 = 2π

n where 0 ≤ i ≤ n − 1, including m∠vnOv1 = 2π
n . Extend the segment viO to

become the diameter. Call the other endpoint D (there could already be a vertex there). From the inscribed angle

O
v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

O D

postulate we know that m∠viOvi+1

2 = m∠viDvi+1 = π
n . Due to viD being a diameter, ∠Dvi+1vi is a right angle.

Therefore the sin(πn ) =
vivi+1

viD
= Length of a side of regular n-gon

Diameter .

(3.1) nsin(
π

n
) =

Perimeter of a inscribed regular n-gon

Diameter

�

For now let's call nsin(πn ) = LBn.
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A

C

dD

O

E

B

Figure 3.1. Inscribed Case

3.1. What Archimedes Did2. Suppose AB is the diameter, O is the center, C is on the circle, and ∠CAB
is a third of a right angle or π

6 . This implies ∠ACB is a right angle, and 4ACD is a right triangle. Plus,
m∠COB = 2m∠CAB.

Archimedes starts with an approximation for AC
CB (the approximation is bigger than the actual value) and for AB

BC
(although this is not an approximation we will assume it is for the sake of induction). The �rst ratio is cot(m∠CAB).
Second one is csc(m∠CAB). Archimedes proves that we can get cot(m∠CAB

2 ) by adding together cot(m∠CAB)

and csc(m∠CAB). But this is just our trig identity (2.4). Plus he proves we can get csc(m∠CAB
2 ) by square rooting

cot2(m∠CAB
2 ) + 1. Once again this is our trig identity (2.5).

Both csc(m∠CAB) and csc(m∠CAB
2 ) can easily be made to look like nsin(πn ), since m∠CAB is already in the

form π
n , and all we have to do is take the reciprocal of the cosecants, and multiply by n.

Again it makes sense to keep all approximations bigger than the actual value, so that when we take the reciprocal
of cosecant, our approximate lower bound is slightly smaller than the actual lower bound.

4. Convergence!

4.1. Nice Formulae. To �nd the complexity of Archimedes's method, I need to �gure out the rate of convergence.
To do that, we are going to need a nice iterative formula. A lot of that has already been done during the trigonometric
sections. It is safe enough to claim that at each step Archimedes does both equation (2.4) and (2.5):

(4.1) csc(
π

n
) + cot(

π

n
) = cot(

π

2n
)

(4.2)

√
cot2(

π

2n
) + 1 = csc(

π

2n
)

After the initial csc(πn ) and cot(πn ) are given, he always need to do (4.1) �rst, then (4.2). Doing both of these
equations and acquiring the next set of trigonometric values can count as one iteration. But the problem with this
set of nice formulae, is that we can't do much of error analysis since those ratios themselves are not the values
bounding pi.

So I manipulate them, keeping in mind my nsin(πn ) and ntan(πn ), which I call LBn and UBn respectively. (4.1)
�rst:

csc(
π

n
) + cot(

π

n
) =cot(

π

2n
)

1

sin(πn )
+

1

tan(πn )
=

1

tan( π
2n )

1

2nsin(πn )
+

1

2ntan(πn )
=

1

2ntan( π
2n )

1

2LBn
+

1

2UBn
=

1

UB2n

UBn + LBn

2LBnUBn
=

1

UB2n

(4.3) UB2n =
2LBnUBn

UBn + LBn

2If you want to know Archimedes's geometric proof look at [5]
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This is nice to have.
Next (4.2): √

cot2(
π

2n
) + 1 =csc(

π

2n
)√

1

tan2( π
2n )

+ 1 =
1

sin( π
2n )√

tan2( π
2n ) + 1

tan2( π
2n )

=
1

sin( π
2n )√

tan2( π
2n )

tan2( π
2n ) + 1

=sin(
π

2n
)√

tan2( π
2n )

sec2( π
2n )

=sin(
π

2n
)√

tan2(
π

2n
)cos2(

π

2n
) =sin(

π

2n
)√

tan(
π

2n
)sin(

π

2n
)cos(

π

2n
) =sin(

π

2n
)√

4n2tan(
π

2n
)
sin(πn )

2
=2nsin(

π

2n
)√

2ntan(
π

2n
)nsin(

π

n
) =2nsin(

π

2n
)

(4.4)
√
UB2nLBn = LB2n

If I had to do this by hand, I would much prefer using the iterations of (4.1) and (4.2), because (4.1) is simple
addition. (4.3) on the other hand requires multiplication, addition, and division. The advantage of (4.3) and (4.4)
however is that I can use them to directly get me what UB2n − LB2n is. And the number of digits UBm and
LBm, where m is the number of sides in both of inscribed and the circumscribed regular polygons the compute-r
(Archimedes, Al-Kashi, Liu-Hui, van Ceulen, to name a few) went up to, had in common is the accuracy of the
respective compute-r's approximation of π. Or in other words the number of zeros in UBm − LBm is the digits
accuracy.

4.2. Convergence Rate of Archimedes Method. I started from guesses. For Archimedes had gotten 2 decimal
digits of accuracy from a 96-gon, or 6∗24 sides. The Chinese mathematician, Liu-Hui, using very similar methods got
5 decimal digits of accuracy from a 3072-gon, or 6∗29 sides. Liu-Hui got 3 more digits by running Archimedes method
5 more times. In principle, Al-Kashi used Archimedes's method except with constant error-checking methods and
got 14 decimal digits using 6 ∗ 227-gon. He ran the iteration 23 more steps and got 12 more decimal digits. Lastly
the famous Ludolph van Ceulen who also used Archimedes method except with slightly di�erent initial conditions
got 35 decimal digits using a 262-gon3. The most reasonable guess seems to be that he started with a square,
4-gon, and did the iteration 60 times. So then with a roughly similar starting condition, van Ceulen calculated 56
more iterations than Archimedes and got 33 more decimal digits. The di�erence may be somewhat attributable
to the accuracy of the square root approximations. In the end though for about every two iterations I get a digit
of accuracy. I get the same pattern with my Pseudo-Archimedes code, which runs the iterations doing all the
calculations at a 71 digits of arbitrary precision accuracy, without worrying about ceilings and �oors (Table 1).

This suggests that at each step of the iteration UB4n −LB4n ≈ 1
10 (UBn −LBn) or UB2n −LB2n ≈ 1√

10
(UBn −

LBn).
After a lot of �ddling and false starts (some of the equations looked so much like the arithmetic mean - look at

the 4th step in the proof for 4.3 - and other ones looked so much like the geometric mean - equation 4.4 - but I knew
it was de�nitely not quadratic convergence), I �nally noted LB2n to be always greater than LBn. This is somewhat
obvious geometrically as the inscribed regular n-gon gains more sides to look more like a circle. Plus, we know that
any UBn should always be bigger than any LBm, considering the unstated but fundamental premise of Archimedes
method, that the perimeter of the circumscribed regular n-gon should never be smaller than the circumference, and

3All this information was taken from [1, 2]
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i Digits accuracy of UB6∗2i , LB6∗2i

2 2
4 3
6 4
9 6
12 8
24 15
27 17
39 24
60 37

Table 1. Pseudo-Archimedes accuracy of UB6∗2i − LB6∗2i versus i

the perimeter of the inscribed regular n-gon should never be bigger than the circumference (The second statement
might be able to fail(?) if the polygon wasn't an inscribed regular n-gon, and was instead some concave squiggly
thing). The �rst statement should be correct. The second one is right because the chords can never be longer than
their respective arcs. So then the geometric mean

√
UB2nLBn should always return a LB2n which is bigger than

LBn.
Therefore:

UB2n − LB2n ≤UB2n − LBn

UB2n − LBn =
2LBnUBn

UBn + LBn
− LBn

=
2LBnUBn

UBn + LBn
− LBn(UBn + LBn)

UBn + LBn

=
LBnUBn − LB2

n

UBn + LBn

=
LBn(UBn − LBn)

UBn + LBn

UB2n − LB2n

UBn − LBn
≤ LBn

UBn + LBn

Using the same reasoning that UBn is greater than LBn,
LBn

UBn+LBn
≤ 1

2 .

(4.5)
UB2n − LB2n

UBn − LBn
≤ 1

2

So at every iteration our error is divided by 2. This is somewhat close to, and includes our preliminary guess as
to what the rate of convergence might be ( 1√

10
< 1

2 ). We can express the convergence of Archimedes' method as:

errori = O(2−i) where i is the number of iterations

and errori = UBa∗2i − LBa∗2i

where a is some integer

It is exponential convergence with rate 1
2 .

Note: looking at the experimental data however, it is suggestive that we potentially could make an even sharper
convergence rate.

5. Guessing At Actual Complexities Of Archimedes's Method

Ludolph van Ceulen found π to 35 digits of accuracy. The Germans were so impressed that they frequently called
π the Ludolphine number. So then approximately how many arbitrary precision calculations must have van Ceulen
computed?

However there must be a disclaimer. Quite often, by doing things a little di�erently complexity can frequently be
improved. Also most mathematicians (except Ludolph) did not take Archimedes's method to really high iterations,
therefore their complexity time was very much reduced by the apriori knowledge of lower and upper bounds for
certain square roots. And frequently they do not reveal how they found the numbers. And as all practiced
compute-rs, they likely had little short cuts. Moreover, issues arise in actual time di�erences in computing certain
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arithmetic operations. For example, in general I would say multiplication is faster than division of the same N-digit
numbers, but in arbitrary precision, both of their complexities are denoted by the same big-O notation. Same goes
for addition and subtraction. So to project the computer's complexity to the human complexity that must have
been required from these ancient mathematicians to calculate the digits of pi, is a speculation at best.

5.1. Brute Force. You can use equations (4.3) and (4.4) to just plug and chug your way, and do every calculation
to the N-digit precision, where N is the number of decimal digits of accuracy you want. Since the errori = O(2−i)
we need roughly log210 iterations for each decimal digit. So we would need approximately Nlog210 iterations.
But each iteration takes multiplication of equally N-precise numbers, O(N2), and then addition ,O(N), plus a
division, O(N2), (4.3), AND another multiplication O(N2) and a square root (4.4). I shall assume that most
mathematicians used some shape or form of the Babylonian method to compute square roots (computers today
still use this method). Babylonian method is a special case of Newton's method (f(x) = x2 − y), and quadratically
convergent [3], so it would require O(log2N) iterations. At each iteration of the Babylonian method, we require a
division of two numbers with approximately 2N digits and N digits, O(2N2), addition, O(N), and a multiplication
by 1

2 which is just O(N) complexity [4]. Let's put that all together and we get:

Nlog210
(
O
(
N2

)
+O

(
N
)
+O

(
N2

)
+O

(
N2

)
+O

(
log2N

)(
O(2N2) +O(N) +O(N)

))
For really large N → ∞, complexity is around O(N3log2N).

5.2. Archimedes's Way Decimal Version. Archimedes chose his fractions and his approximations to square
roots without much explanation or reason, other than that they were pretty good lower or upper bounds. There was
no established consistency that I could observe in the mathematicians' methods. A consistent way to do this would
take the same route Archimedes did (equations 4.1 and 4.2) except stick to decimals and a certain amount of decimal
digits precision at each step. The complexity of the decimal version of Archimedes's method ought to be somewhat
similar to the complexity of the fractional version, or at least equalO(Complexity of fractional version). For example
van Ceulen eventually turned to a decimal-esque system. His tombstone had 314159265358979323846264338327950288

100000000000000000000000000000000000 and
314159265358979323846264338327950289
100000000000000000000000000000000000 as a lower bound and upper bound, respectively, for π.
So suppose we want π to N-digit precision. Assume that at each step when we �nd the square root, we �nd

it to N-digit accuracy. Use equations (4.1) and (4.2), we would need to do an addition, O(N) (4.1), AND a
multiplication, O(N2), an addition by 1 which we shall assume takes O(1) complexity, and a square root (4.2). The
square root, we again assume Babylonian Method, and just like before requires division, O(2N2), addition, O(N),
and a multiplication by 1

2 , O(N). In all we would have to run (4.1) amd (4.2) approximately Nlog210 times. Then

at the very last iteration, we have to take the reciprocal and multiply by a constant, O(N2) So this comes out to be

Nlog210
(
O
(
N
)
+O

(
1
)
+O

(
N2

)
+O

(
log2N

)(
O(2N2) +O(N) +O(N)

))
+O(N2)

For really large N → ∞, complexity is around O(N3log2N), same as the brute force way. You would have to
do this twice, once for the perimeter of the circumscribed polygon and another for the perimeter of the inscribed
polygon. If you plug in N = 35, the number of digits van Ceulen computed to, he must have done ≈ 3544200
calculations. And since he should have had to double check or triple check each one, it jumps to around 7 to 10
million calculations he must have done. Wow. I feel like I could potentially have done 7 to 10 million calculations
in my entire lifetime. Moral of the story is anything is possible.

6. What More Could be Done?

Although I am happy with my current bound I could attempt to �nd a sharper bound for the convergence rate,
because evidence suggests this is so. Also looking back at Table 1, we can see that the convergence does not get too
much better even calculating everything in 71-digit precision. So the next attempt would be to �nd a reasonable
optimization of complexity and convergence through experimentation (I have been rather unsuccessfully trying to
theorize an optimization of the square roots approximations).

Codes

Pseudo-Archimedes:

sage: #Pseudo-Archimedes: I ignore all the ceilings and the floors that Archimedes had to deal with.

sage: #I wrote this to check my convergence rate.

sage: d=70 #How many digits you want

sage: import mpmath as mp

sage: mp.mp.dps=d+1 #I take this precaution since I am not thinking about ceilings and floors.
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sage: def BoundPi(n,o): #n is number of Archimedes' iterations, o is the starting regular o-gon; Archimedes started with o=6, a hexagon

... a=mp.mpf(cot(pi/o))

... b=mp.mpf(csc(pi/o))

... for i in range (0,n):

... a=a+b #cot(k)+csc(k)=cot(k/2)

... b=sqrt(a^2+1) #csc(k/2)=sqrt(cot^2(k/2)+1)

... return [1/a*o*2**n,1/b*o*2**n]

...

...

sage: def DigitsAcc(n,o):

... #Finds the digits in common between UB_o*2^n and LB_o*2^n

... a=BoundPi(n,o)[0]-BoundPi(n,o)[1]

... b=0

... while a<=1:

... a=a*10

... b=b+1

... return b

A Fractional Archimedes:

sage: #More Historical Archimedes: I try my best to keep to what he did, but hard to do

sage: #since I do not know the exact method through which he approximated square roots.

sage: #But it makes this one is more realistic, uses "fractions"

sage: d=80

sage: import mpmath as mp

sage: mp.mp.dps=d+1 #I do this so I can find correct ceilings and floors.

sage: def UBoundPi(n,acc): # acc=the initial decimal digit accuracy desired of sqrt(3)

... a=floor(sqrt(mp.mpf('3'))*10**(acc-1)) # For the Upper bound, we needed lower

... #bound estimates for the square roots.

... b=10^(acc-1) # The denominator of cot(30 deg)

... c=2*10^(acc-1) # numerator of csc(30)

... d=10^(acc-1) # Denominator of csc(30)

... for i in range (0,n):

... a=a+c #Just add numerators

... c=floor(sqrt(a^2+b^2)) #Just take the integer part of square root

... return b/a*6*2**n

...

...

sage: def LBoundPi(n,acc): # acc=the initial decimal digit accuracy desired of sqrt(3)

... a=ceil(sqrt(mp.mpf('3'))*10**(acc-1)) # For the Lower bound, we needed Upper

... #bound estimates for the square roots.

... b=10^(acc-1) # The denominator of cot(30 deg)

... c=2*10^(acc-1) # numerator of csc(30)

... d=10^(acc-1) # Denominator of csc(30)

... for i in range (0,n):

... a=a+c #Just add numerators

... c=ceil(sqrt(a^2+b^2)) #Just raise it by 1

... return d/c*6*2**n

...

...

sage: def HistDigitsAcc(n,acc):

... #Finds the digits in common between UB_6*2^n and LB_6*2^n

... #When they started with an initial accuracy of sqrt(3)

... a=UBoundPi(n,acc)-LBoundPi(n,acc)

... b=0

... while a<=1:

... a=a*10

... b=b+1
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... return b
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