
Topology: The Cantor Set

Date: August 2, 2016

This assignment is about the Cantor Set, a remarkable subset of [0, 1]. Named for the mathemati-
cian Georg Cantor, this set is a fractal (a type of self-similar object) and possesses many strange
properties. Solutions for the problems on the following page are due August 24, 2016. Unlike
standard assignments, groups of up to 3 people may submit a single assignment for credit.
For each problem, list who worked on that problem. (This will not affect scores.)

Description 1: To construct the Cantor set, we need to apply a recursive process to the interval
[0, 1]. Let F0 = [0, 1]. We obtain F1 by removing the middle third of closed line segments:

F1 = [0, 1] \ (1
3
, 2
3
) = [0, 1

3
] ∪ [2

3
, 1].

Now we repeat this process to obtain F2:

F2 = F1 \
(
(1
9
, 2
9
) ∪ (7

9
, 8
9
)
)

= [0, 1
9
] ∪ [2

9
, 1
3
] ∪ [2

3
, 7
9
] ∪ [8

9
, 1].

Repeating this, we get a collection {Fn}∞n=0 of sets. Visually, F0 through F4 appear as follows:

Finally, the Cantor set is defined to be the intersection of these sets: C =
∞⋂
n=0

Fn .

We know that C 6= ∅ because the endpoints of the removed intervals remain. That is, points such
as 1

3
∈ C since, after the interval (1

3
, 2
3
) is removed, 1

3
is in the top third of an interval forever after.

However, not every point left over is the endpoint of some interval. For instance, 1
4
∈ C since 1

4

alternates between being in the bottom third and the top third of intervals.

Description 2: Alternatively, we may think of the Cantor set as the points in [0, 1] whose ternary
expansion has no ones. Every number in [0, 1] can be written as 0.x1x2x3 . . . where xi ∈ {0, 1, 2}.
This corresponds to “choosing” the left (0), middle (1), or right (2) third of the interval specified
by the previous choice. So 1

4
= 0.020202 . . . ∈ C.

For instance, x = 0.2x2x3 . . . means that x ∈ [2
3
, 1]. Further specifying that x2 = 0 forces x =

0.20x3 . . . to be in the interval [2
3
, 7
9
].

In what follows, either description of C may be used. Some properties are most easily
proved using one definition instead of the other.
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Topology: The Cantor Set

Prove at least four of the following (extra credit for each additional solution):

1. C is closed. Conclude that C is compact.

2. IntC = ∅. Conclude that C is nowhere dense (i.e., IntC = ∅).

3. Every point of C is a limit point of C. Conclude that no point of C is an isolated point.

4. The set E, consisting of endpoints of the intervals removed to obtain C, is countable. For
instance, 1

3
∈ E since

(
1
3
, 2
3

)
was removed in the first step.

5. C is uncountable.

6. The sum of the lengths of intervals removed from [0, 1] is equal to 1. (For an interval (a, b),
the length `((a, b)) = b− a.)

7. C is totally disconnected (i.e., the only connected components are singleton sets).

These are not a complete list of the interesting (and seemingly contradictory) properties of the
Cantor set:

• Using C, one can define the Cantor function (also known as the Devil’s Staircase), a non-
decreasing surjective continuous function f : [0, 1] → [0, 1] whose derivative is 0 (wherever
f ′(x) exists).

• C is a complete metric space.

• C is an example of an uncountable set with Lebesgue measure 0.

• For real numbers, we can “sum” sets: A + B = {a + b | a ∈ A, b ∈ B}. The surprising fact is
that C + C = [0, 2]. (Yes, the entire interval.)

• Above we proved that C is: totally disconnected, perfect (closed with no isolated points),
compact, and (being a subset of [0, 1]) a metric space. Any nonempty set with these properties
is necessarily homeomorphic to C.
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