MATH 54 - TOPOLOGY SUMMER 2015 MIDTERM 2

DURATION: 2 HOURS

This exam consists of 5 independent problems. You may treat them in the order of your choosing, starting each problem on a new page.

Every claim you make must be fully justified or quoted as a result from the textbook.

Problem 1

- 1. Show that a topological space is T_1 if and only if for any pair of distinct points, each has a neighborhood that does not contain the other¹.
- 2. Determine the interior and the boundary of the set

$$\Xi = \{(x, y) \in \mathbb{R}^2 , 0 \le y < x^2 + 1\}$$

where \mathbb{R}^2 is equipped with its ordinary Euclidean topology.

Problem 2

Let E be a set with a metric d and \mathcal{T}_d the corresponding metric topology on E.

- 1. Prove that the map $d: (E, \mathcal{T}_d) \times (E, \mathcal{T}_d) \longrightarrow \mathbb{R}$ is continuous.
- **2.** Let \mathcal{T} be a topology on E, such that $d:(E,\mathcal{T})\times(E,\mathcal{T})\longrightarrow\mathbb{R}$ is continuous. Prove that \mathcal{T} is finer than \mathcal{T}_d .

Hint: it might be helpful to consider sets of the form $d^{-1}((-\infty,r))$ for r>0.

 $^{^{1}\}mathrm{A}$ topological space is said T_{1} if all its singletons are closed.

Problem 3

The purpose of this problem is to prove that the box topology on \mathbb{R}^{ω} is not metrizable.

1. Recall the definition of the box topology on \mathbb{R}^{ω} .

Denote by $\mathbf{0}$ the sequence constantly equal to 0 and let

$$P = (0, +\infty)^{\omega} = \prod_{n \ge 1} (0, +\infty)$$

be the subset of positive sequences.

- **2.** Verify that **0** belongs to \bar{P} .
- **3.** Prove that no sequence $(p_n)_{n\geq 1}\in P^\omega$ converges to **0** in the box topology.
- 4. Conclude.

Problem 4

- 1. Let X be a set.
 - (a) Recall the definition of the uniform topology on \mathbb{R}^X .
 - (b) Recall the definition of uniform convergence for a sequence of functions f_n in \mathbb{R}^X .
- **2.** Prove that a sequence in \mathbb{R}^X converges uniformly if and only if it converges for the uniform topology.

Problem 5

Consider the space \mathbb{R}^{ω} of real-valued sequences, equipped with the uniform topology.

- 1. Prove that the subset B of bounded sequences is closed in \mathbb{R}^{ω} for the uniform topology.
- **2.** Let \mathbb{R}^{∞} denote the subset of sequences with finitely many non-zero terms. Determine the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} for the uniform topology.