
Math 54 Summer 2015
Homework #4: closed sets and limit points - Elements of solution

(1) Prove the following result:
Theorem Let X be a set and γ : P(X)→ P(X) a map such that
(i) γ(∅) = ∅;

(ii) A ⊂ γ(A);
(iii) γ(γ(A)) = γ(A);
(iv) γ(A ∪B) = γ(A) ∪ γ(B).
Then the family T = {X \ γ(A) , A ⊂ X} is a topology in which A = γ(A).

First, we prove that A ⊂ B ⇒ γ(A) ⊂ γ(B). To do so, observe that A ⊂ B is

equivalent to A ∪B = B. Therefore, γ(B) = γ(A ∪B)
(iv)
= γ(A) ∪ γ(B) ⊃ γ(A).

(O1) The subset X = X \ ∅ (i)
= X \ γ(∅) is in T . Moreover, (ii) implies that

X = γ(X) so ∅ = X \ γ(X) is also in T .

(O2) Let {Uα}α∈J be a family such that Uα = X \ γ(Aα) for each α ∈ J , and
U =

⋃
α∈J Aα. De Morgan’s Laws imply that

X \ U =
⋂
α∈J

Aα

and we want to prove that this set is of the form γ(B) for some subset B of X.
Since

⋂
α∈J γ(Aα) ⊂ γ(Aα) for all α ∈ J , and γ preserves inclusions, we get, for

all α ∈ J ,

γ(X \ U) ⊂ γ(γ(Aα))
(iii)
= γ(Aα)

so that γ(X \ U) ⊂
⋂
α∈J γ(Aα) = X \ U , the reverse inclusion is guaranteed by

(ii), hence X \ U = γ(X \ U), that is,

U = X \ γ(X \ U)

and T is stable under arbitrary unions.

(O3) Let {Ui = X \ γ(Ai)}1≤i≤n be a finite family of elements of T . De Morgan’s
Laws imply that

X \
n⋂
i=1

Ui = X \
n⋂
i=1

γ(Ai) = X \ γ

(
n⋂
i=1

Ai

)
where the last equality follows from (iv) by induction. This shows that T is stable
under finite intersections, which concludes the proof that it is a topology on X.

Let A be a subset of X. Then γ(A) is closed by definition of T and A ⊂ γ(A)
by (ii) so Ā ⊂ γ(A). Conversely, observe that X \ Ā, being open, is of the form
X \ γ(B), that is, Ā = γ(B) for some B ⊂ X. Since A ⊂ Ā, and γ preserves
inclusions, it follows that

γ(A) ⊂ γ(Ā) = γ(γ(B))
(iii)
= γ(B) = Ā,

hence γ(A) = Ā.



(2) (a) Show that a topological space X is Hausdorff if and only if the
diagonal ∆ = {(x, x) , x ∈ X} is closed in X ×X.

A key observation is that for A and B subsets of X, the condition A∩B = ∅
is equivalent to (A×B) ∩∆ = ∅.
Now, assume X Hausdorff and let (x, y) ∈ (X ×X) \∆. Since x 6= y, there
exist disjoint open sets Ux 3 x and Uy 3 y. By definition of the product
topology, U = Ux × Uy is a neighborhood of (x, y) and by the preliminary
observation, U ∩∆ = ∅ so X ×X \∆ is open hence ∆ is closed.
Conversely, assume that ∆ is closed and let x 6= y in X. Since (x, y) belongs
to (X ×X) \∆ assumed open, there exists a neighborhood V of (x, y) such
that V ∩ ∆ = ∅. Product of open sets form a basis for the topology of
X ×X, so there exist open sets U1 and U2 such that (x, y) ∈ U1 ×U2 ⊂ V so
(U1 × U2) ∩ ∆ = ∅ which, by the preliminary observation again, guarantees
that U1 and U2 are disjoint neighborhoods of x and y respectively.

(b) Determine the accumulation points of A =
{

1
m

+ 1
n
, m, n ∈ Z+

}
⊂ R.

Let A′ denote the set of accumulation points of A. The fact that limn→∞
1
n

= 0

implies that
{

1
p
, p ∈ Z+

}
∪ {0} ⊂ A′. Let us prove the converse inclusion.

First, observe that if an interval (a, b) with a > 0 contains infinitely many
elements of the form 1

m
+ 1

n
, then one of the variables m and n must take only

finitely many values, while the other takes infinitely many values. Now let
x ∈ A′ with x > 0. For any ε > 0, the set Bε = (x − ε, x + ε) ∩ A must be
infinite. Without loss of generality, we can assume that

Bε =

{
1

m
+

1

n
, m ∈ F , n ∈ Im

}
with F finite and at least one Im infinite, say Im0 . For all n ∈ Im0 , we have∣∣∣∣∣∣∣∣x− 1

m0

∣∣∣∣− 1

n

∣∣∣∣ ≤ ∣∣∣∣x− 1

m0

− 1

n

∣∣∣∣ < ε.

For n large enough, the left-hand side can be made arbitrarily close to
∣∣∣x− 1

m0

∣∣∣,
in particular, we get that 1

2

∣∣∣x− 1
m0

∣∣∣ < ε. If x > 0 is not of the form 1
m0

for

any m0 ∈ Z+, then there exists a positive minimum value for the numbers
1
2

∣∣∣x− 1
m0

∣∣∣ and Bε cannot be infinite for arbitrarily small values of ε.



(3) The boundary of a subset A in a topological space X is defined by

∂A = Ā ∩X \ A.
(a) Show that Ā = Å t ∂A1.

If x ∈ Å, there exists a neighborhood of A that is included in A. If x ∈ ∂A,
in particular x ∈ X \ A so every neighborhood of x intersects X \ A. This is

a contradiction so Å ∩ ∂A = ∅.
The interior and boundary of A are included in Ā by definition so the inclusion
Ā ⊃ Åt ∂A is trivial. Conversely, let x ∈ Ā. If x has a neighborhood U such
that U ⊂ A, then x ∈ Å. The alternative is that every neighborhood of x
has non-empty intersection with X \ A, that is x ∈ X \ A so that x ∈ ∂A.

Therefore, Ā ⊂ Å t ∂A, which concludes the proof.

(b) Show that ∂A = ∅ if and only if A is open and closed.

By definition of the interior and the closure, Å ⊆ A ⊆ Ā and A is open and
closed if and only if Å = Ā. By (a), this is equivalent to ∂A = ∅.

(c) Show that U is open if and only if ∂U = Ū \ U .

The result of (a) states that U and Ů are complements in Ū , so Ů = Ū \ ∂U
and U is equal to Ů , that is, U is open if and only if U = Ū \ ∂U , which is
equivalent to the condition ∂U = Ū \ U .

(d) If U is open, is it true that U = ˚̄U?

If U is open, the inclusion U ⊂ Ū implies that U ⊂ ˚̄U . However, the reverse
inclusion may fail: consider for instance U = R \ {0} in R. It is open as the

union of open intervals and Ū = R so that ˚̄U = R ! U .

1The disjoint union symbol t is used to indicate that the sets in the union have empty intersection.



(4) Find the boundary and interior of each of the following subsets of R2.
(a) A = {(x, y) , y = 0}
(b) B = {(x, y) , x > 0 and y 6= 0}
(c) C = A ∪B
(d) D = Q× R
(e) E = {(x, y) , 0 < x2 − y2 ≤ 1}
(f) F = {(x, y) , x 6= 0 and y ≤ 1

x
}

Note that, except for (d), a picture is very helpful to determine the boundary and
interior of the subsets at hand before rigorously justifying the intuition, using what
is known about the (metric) topology of R2.

(a) Observe that A is closed, as the complement of R× (−∞, 0) ∪ (0,+∞) which
is open as a product of open sets. Another way to see this is to remark that every
element of R2 \ A is of the form (x, y) with y 6= 0, and for any x ∈ R, the basis
element

V = (x− 1, x+ 1)×
(
y − |y|

2
, y +

|y|
2

)
satisfies (x, y) ∈ V ⊂ R2 \ A.
Moreover, the interior of A is empty: every element of A is of the form (x, 0), any
neighbourhood of which contains a basis element (a, b) × (c, d) with c < 0 < d,
which in turn cannot be included in A, for it contains (x, d

2
) /∈ A.

We conclude that Å = ∅ and ∂A = A.

(b) Note that B = (0,+∞)× (−∞, 0)∪ (0,+∞) is open as a product of open sets.
Another way to see this is to consider (x, y) ∈ B, that is, x > 0 and y 6= 0. Then

V =

(
x

2
,
3x

2

)
×
(
y − |y|

2
, y +

|y|
2

)
is a neighborhood of (x, y) that is contained in B, which is therefore open.
Finally, B is open because it is the inverse image of R2 \ A open under the con-
tinuous map (x, y) 7→ (lnx, y).
Let us prove that the closure of B is the closed half-plane R defined by x ≥ 0.
Let V be a neighborhood of (x, y) ∈ R. If (x, y) ∈ B, there is nothing to prove. If
xy = 0, then V contains a subset of the form (a, b)× (c, d) with 0 < b and cd 6= 0
so
(
x+b
2
, y+d

2

)
or
(
x+b
2
, y+c

2

)
belongs to V ∩ B, which is therefore not empty. We

have proved that R ⊂ B̄. The converse inclusion follows from the same argument
invoked to prove that R2 \ A is open.
Since B is open, it follows from (c) in the previous problem that ∂B = B̄ \B, that
is ∂B is the union of the vertical axis and the positive horizontal axis.

(c) Since A ∪B = Ā ∪ B̄, it follows form (a) and (b) that C̄ = R ∪ A consists of
the points (x, y) such that x ≥ 0 or y = 0.



Next, C̊ is the right half-plane (0,+∞) × R: this set is open as the product of
open sets and it is maximal. Indeed, if x ≤ 0, then any neighborhood of (x, y)
contains a subset of the form (a, b)× (c, d) with a < 0 and cd 6= 0 so

(
x+a
2
, y+d

2

)
or(

x+a
2
, y+c

2

)
belongs to V ∩ (R2 \ C), which is therefore not empty.

It follows from the result proved in (a) of the previous problem that ∂C = C̄ \ C̊
is the union of the vertical axis and the negative horizontal axis.

(d) Every non-empty open interval of R contains infinitely many rational and
irrational numbers, so every product of intervals contains infinitely many elements
ofD and R2\D. Therefore, ∂D = R2 and, since ∂D = D̄\D̊, it follows immediately

that D̊ = ∅.

(e) First, observe that the set Ω = {(x, y) , 0 < x2 − y2 < 1} is open, for instance
as the inverse image of the open set (0, 1) under the map (x, y) 7→ x2 − y2, which
is polynomial, hence continuous.
A similar argument, shows that Γ = {(x, y) , 0 ≤ x2 − y2 ≤ 1} is closed. Since

Ω ⊂ E ⊂ Γ, we get the chain of inclusions Ω ⊂ E̊ ⊂ Ē ⊂ Γ, hence

∂E = Ē \ E̊ ⊂ Γ \ Ω.

In other words, a boundary point (x, y) of E satisfies either x2 = y2 or x2−y2 = 1.
Conversely, assume that x2 − y2 = 1. Every neighbourhood of (x, y) contains the
points Pδ = (x+ δ, y) for δ ∈ (−δ0, δ0) with δ0 > 0. Since

(x+ δ)2 − y2 = 1 + 2δ(x+ δ),

and the quantity 2δ(x+ δ) takes arbitrarily small positive values when δ runs over
(−δ0, δ0), we see that there are points Pδ in R2 \ E and E so (x, y) is a boundary
point of E. One can proceed in the same way to verify that the two lines given by
the equation x2 = y2 are also included in ∂E, which concludes the proof that ∂E
consists exactly of the union of the hyperbola with equation x2 − y2 = 1 and the
lines with equations y = ±x.
It also follows that E̊ = Ω. We have already obtained the inclusion Ω ⊂ E̊.
Conversely, assume that (x, y) is a point in E not in Ω. Then x2− y2 = 1 so (x, y)

belongs to ∂E which is disjoint from E̊. This proves that E̊ ⊂ Ω and the equality.

(f) No new technique is needed to prove that F̊ is the region located strictly below
the branches of the hyperbola with equation xy = 1, that is,

F̊ =

{
(x, y) , x 6= 0 and y <

1

x

}
,

and that ∂F is the union of the hyperbola and the vertical axis:

F̊ =

{
(x, y) , x = 0 or y =

1

x

}
.


