Worksheet \#7: Linear torus map

Consider the map $\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{l}a x+b y \\ c x+d y\end{array}\right](\bmod 1)=\operatorname{Ax}(\bmod 1)$, where $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and a, b, c, and d are integers.
(1) Assume A has no eigenvalue equal to 1 . Write down a condition on a, b, c, and d such that this is true.
(2) Show that $\boldsymbol{f}(\boldsymbol{p})=\boldsymbol{p}$ implies \boldsymbol{p} has rational components $\left[\begin{array}{l}x \\ y\end{array}\right]$.
(3) Draw the action of $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ on the unit square.
(4) Show how the pieces rearrange to fill some squares.
(5) How many squares are filled for a general A?
(6) How many solutions are there to $\boldsymbol{f}(\boldsymbol{x})=x_{0}$ for a given $\boldsymbol{x}_{\boldsymbol{0}} \in \Pi^{2}$.
(7) BONUS: How many solutions to $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$ are there? [Hint: use matrix $\mathrm{A}-\mathrm{I}$ from above.

