Worksheet \#5: 2D linear stability

(1) Consider $\mathbf{A}=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$. Find a condition on the eigenvalues of \mathbf{A} such that $\boldsymbol{p}=\mathbf{0}$ is a (a) sink:
(b) source:
(c) saddle point
(2) For $\mathrm{A}=\left[\begin{array}{cc}2 & 0 \\ 0 & 1 / 2\end{array}\right]$ write down and plot the first two iterates of $\mathrm{x}_{0}=\left[\begin{array}{c}\frac{1}{4} \\ 4\end{array}\right]$. What curve do they lie on?
(3) For $\mathrm{A}=\left[\begin{array}{ll}a & 1 \\ 0 & a\end{array}\right]$, verify that $\mathrm{A}^{n}=a^{n-1}\left[\begin{array}{ll}a & n \\ 0 & a\end{array}\right]$.
(4) Write out $\mathrm{A}^{n} \boldsymbol{x}$. Use this to decide a condition on a such that the fixed points are a sink or a source.

