Worksheet \#2: Periodic sinks and sources
Consider the function $g(x)=\frac{7}{2} x(1-x)$ ie. a logistic function with $a=\frac{5}{7} . x=\frac{7}{2}$ is a fixed point of $g^{2}(x)$.

(1) Is there a 2 -periodic orbit of g ? If so, what is the orbit?
(2) How many fixed points does g^{2} have, at least?
(3) Is $p_{1}=\frac{3}{7}$ a periodic sink, source or can you not tell?
(4) Is p_{2} also a period- 2 sink, souce or can you not tell? Does this answer agree with p_{1} ? Explain.
(5) Generalize the derivative test: If $\left\{p_{1}, \ldots, p_{k}\right\}$ is a periodic- k orbit of f, what is $\left(f^{k}\right)^{\prime}$ at $x=p_{1}$ in terms of $f^{\prime} ?$ [Hint: Use induction.]
(6) Does the test care which p_{i} you evaluate $\left(f^{k}\right)^{\prime}$ at?

