## Worksheet #2: Periodic sinks and sources

Consider the function  $g(x) = \frac{7}{2}x(1-x)$  ie. a logistic function with  $a = \frac{5}{7}$ .  $x = \frac{7}{2}$  is a fixed point of  $g^2(x)$ .



(1) Is there a 2-periodic orbit of g? If so, what is the orbit?

- (2) How many fixed points does  $g^2$  have, at least?
- (3) Is  $p_1 = \frac{3}{7}$  a periodic sink, source or can you not tell?
- (4) Is  $p_2$  also a period-2 sink, souce or can you not tell? Does this answer agree with  $p_1$ ? Explain.
- (5) Generalize the derivative test: If  $\{p_1, \ldots, p_k\}$  is a periodic-k orbit of f, what is  $(f^k)'$  at  $x = p_1$  in terms of f'? [Hint: Use induction.]

(6) Does the test care which  $p_i$  you evaluate  $(f^k)'$  at?