Worksheet \#11: Points in the Mandelbrot set

Definition: $M=\left\{c \in \mathbb{C}: 0\right.$ is not in basin of ∞ for the $\left.\operatorname{map} \mathrm{P}_{\mathrm{c}}(\mathrm{z})=\mathrm{z}^{2}+\mathrm{c}\right\}$
(1) Is $c=-1$ in M ?
(2) Is $c=1$ in M ? How many iterations did you need before you believed this?
(3) Is $c=i$ in M ?
(4) Check the stability of the orbit you just formed. (i.e., Is it a sink, source or saddle?) [Hint: either use $\left[\begin{array}{l}x \\ y\end{array}\right]$ map in \mathbb{R}^{2} or cheat and use the 1D formula.]
(5) What does Fatou's theorem tell you about if another sink could exist?
(6) So what shape/size is $J(c)$ for $c=i$?
(7) Do you expect $c=i$ to be in the interior, boundary, or exterior of M ? [Hint: perturb c]
(8) Find a simple linear conjugacy between $P_{c}(z)=z^{2}+c$, where c, and z are real and the logistic function $g_{a}(x)=a x(1-x)$, for some a related to c.

