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1 Introduction
Many classical systems exhibit chaotic motion. The three-body problem, the double
pendulum, and stadium billiards are all examples of systems which have extreme sen-
sitivity to initial conditions. This feature of nature was discovered using the laws of
classical mechanics. However, these laws of the macroscopic realm cease to apply to
the behavior of microscopic systems. The dynamics of the smallest scales of nature are
described by quantum mechanics. Certain quantum systems do exhibit chaotic behav-
ior although it is different in nature than classical chaos. The transition from a classical
system to its analogous quantum system is carried out through a procedure known as
“quantization”. The purpose of this paper is to explore the properties of a quantum sys-
tem derived from the quantization of a classically chaotic system. The central question
is “What chaotic features will be preserved through quantization?”

The particular classical system that we choose to investigate is one dimensional
and periodic with period ∆q. We further require the system to be periodic with period
∆p in momentum space. Hence, the phase space (a square of dimension ∆p∆q) has
the geometry of a torus. We choose the dynamics of our system so that the time-t map
is linear and hyperbolic. The specific form of the time-t map which acts on points in
phase space is chosen to be the Cat Map (well known to be a chaotic).

In quantizing this toroidal classical system, we find that the available quantum
states are a series of equally spaced dirac delta functions of varying complex ampli-
tude in both the position and momentum representation. Although the classical form
of this periodic system lacks a real world analogue, the quantum system actually de-
scribes the propagation of light from an ideal periodic diffraction grating. The initial
state of delta functions corresponds to the the varying amplitudes of the wave at each
of the slits. The subsequent time evolutions correspond to the state of the wave front at
evenly spaced intervals.

We motivate the quantum dynamics of our system by first developing the analogous
classical system in Section and then proceeding in Section 3 by quantizing this system.
The underlying constraint of our system in both cases is periodicity in configuration
space (q) and momentum space (p). In both the classical and quantum cases, this
constraint will determine the allowed states for the system and restrict the form of the
time-t map that generates the dynamics.

This paper closely follows the approach of Hannay-Berry [1]. The three main dif-
ferences in our exploration are that we focus solely on the Cat Map, we leave out the
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heavy eigenvalue analysis, and we use the Husimi distribution to view the quantum dy-
namics more thoroughly than they do with the Wigner function (computers have come
quite far since 1980!).

2 Classical Dynamics of the Cat Map

2.1 The Time-t Map
The classical dynamics of a system are governed by the Hamiltonian function H(q, p).
Time evolution of the dynamical variables q and p is given by derivatives of this Hamil-
tonian function,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (1)

We restrict our investigation to Hamiltonians which are quadratic in q and p so that
the partial derivatives of H (and hence the time derivatives of our variables) are linear
functions of q and p. We define H as,

H = aq2 + 2bpq + cp2. (2)

Using Eq. 1 the continuous dynamics of our system may be organized into the vector
equation, [

q̇
ṗ

]
=

[
2b 2c
−2a −2b

] [
q
p

]
. (3)

We are always able to convert this relationship to a linear time-tmap by transforming to
an eigenbasis and integrating. The time-tmap will be some matrix, T which transforms
an initial state to the state a time t later,[

q2

p2

]
=

[
T11 T12

T21 T22

] [
q1

p1

]
. (4)

Note: We have no need to relate the entries of the T matrix to the Hamiltonian coef-
ficients because we will proceed in the next section by deriving the quantum action S
from a chosen T matrix, hence foregoing the use of a particular Hamiltonian.

The form of T is restricted by Liouville’s Theorem to be area preserving. In other
words, the entries of T must satisfy det(T ) = T11T22 − T12T21 = 1. Furthermore, as
explained by Hannay-Berry, if the map T is to preserve the periodicity of any arbitrary
distribution of points in phase space then T must have integer valued entries.

2.2 Visualizing the Classical Dynamics Using Matlab
To get a sense of the classical dynamics, we take our time-t map to be given by

T =

[
2 1
3 2

]
,

which is typically called a cat map; this map will later be used to derive an analogous
map in the context of quantum dynamics with similar behavior. This map is integer-
valued with determinant 1, and has fixed points at (0, 0) and (0.5, 0.5), both of which
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are saddle points. In fact, this map displays chaotic behavior as well, as the following
tiles suggest (Figure 1).

We began by plotting 500 random points around (0.5, 0.5) and then applied our
time-t map multiple times. After 4 iterations, some of these points had already been
mapped around the cyclic boundary (viewing the square as a torus). After 25 iterations,
it becomes pretty clear that the behavior near the equilibrium is chaotic, especially in
light of the 100-iteration tile. In fact, the Lyapunov exponents of this map are ln(2 ±√

3), and so we have chaotic behavior.

3 Quantum Dynamics of the Cat Map
The development of the quantum version of our system will come in two steps. First,
we construct the form of the allowable quantum wavefunctions given our periodic con-
straint, then we derive the time-t map which evolves quantum states. The system is
defined with periodicities ∆q, ∆p such that the available phase space area is an integer
multiple of h, ∆q∆p = Nh. From here on out, we change to geometrized units such
that h̄ = h

2π = 1. Thus, the area of our phase space is ∆q∆p = 2πN .

3.1 Discrete State Space
We show that the wavefunctions which exhibit periodicity in space and momentum are
dirac combs. The periodicity requires 〈q|ψ〉 = 〈q + ∆q|ψ〉 and 〈p|ψ〉 = 〈p + ∆p|ψ〉,
which constrains the wavefunction amplitudes as follows:

〈p|ψ〉 =

∫
dq〈p|q〉〈q|ψ〉

=

∫
dq〈p|q〉〈q + ∆q|ψ〉

=

∫
dq′〈p|q′ −∆q〉〈q′|ψ〉

=

∫
dq′e−ip(q

′−∆q)〈q′|ψ〉

= eip∆q
∫
dq′〈p|q′〉〈q′|ψ〉

= eip∆q〈p|ψ〉.

This equation can only hold if 〈p|ψ〉 has value zero when p∆q 6= 2πn. In other words,
〈p|ψ〉 is a series of equally spaced Dirac delta functions,

〈p|ψ〉 =

∞∑
n=−∞

φnδ(p−
2πn

∆q
). (5)
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Lastly, periodicity in momentum requires the φn to repeat,

〈p|ψ〉 = 〈p+ ∆p|ψ〉
∞∑

n=−∞
φnδ

(
p− 2πn

∆q

)
=

∞∑
n=−∞

φnδ

(
p+ ∆p− 2πn

∆q

)

=

∞∑
n=−∞

φnδ

(
p− 2π(n−N)

∆q

)

=

∞∑
n=−∞

φn+Nδ

(
p− 2πn

∆q

)
φn = φn+N .

With this periodicity in the discrete amplitudes φn, we may define pn = 2πn
∆q and write

the wavefunction in the momentum representation as a finite sum,

〈p|ψ〉 =

N−1∑
n=0

φnδ(p− pn)→ |ψ〉 =

N−1∑
n=0

φn|pn〉. (6)

By reversing the roles of p and q above we can place a similar constraint on the
spatial wave function,

〈q|ψ〉 =

N−1∑
n=0

φnδ(q − qn)→ |ψ〉 =

N−1∑
n=0

ψn|qn〉, (7)

where qn = ∆qn
N . We find that the components φn and φn are related by a discrete

Fourier transform,

ψm = 〈qm|ψ〉 =

N−1∑
n=0

φn〈qm|pn〉

=

N−1∑
n=0

φne
iqmpn

=

N−1∑
n=0

φne
i2π nm

N .

In the transformation from classical to quantum, the nature of the physical states is
drastically changed. While in the classical system the available states constitute a con-
tinuum of points in the two-dimensional phase space of q and p, in the quantum system
the available states are represented by vectors in an N -dimensional Hilbert space. The
square moduli of the entries of this quantum state vector in the position representation
correspond to the probabilities of the particle being found at each discrete position. The
momentum representation of the quantum state is given by a discrete Fourier transform
of the position representation vector. Hence, the position and momentum of the particle
are no longer independent quantities as they were in the classical case.
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3.2 Quantum time-t map
The dynamics of a quantum state are governed by the Schroedinger equation,

d

dt
|ψ〉 = −iH|ψ〉. (8)

This equation is integrated to obtain |ψ(t)〉,

|ψ(t)〉 = e−i
∫
dtH |ψ〉 = U(t)|ψ〉. (9)

The time-t map U is a matrix with entries 〈qi|U |qj〉 that each represent a transition
amplitude from the discrete position qj to qi. One approach to obtaining the entries
〈qi|U |qj〉 is using the path integral method* [3]. This results in,

〈qi|U |qj〉 = (−1)r
(
i
∂2S

∂qi∂qj

)1/2

eiS(qi,qj). (10)

Following Hannay-Berry, we assume S to be quadratic in qi, qj ,

S(qi, qj) =
1

2
(S11q

2
1 + 2S12q1q2 + S22q

2
2). (11)

Using the classical relationships p1 = −∂S/∂q1 and p2 = ∂S/∂q2, we can write relate
the final and initial momenta to the final and initial positions as,[

−p1

p2

]
=

[
S11 S12

S12 S22

] [
q1

q2

]
. (12)

We can then relate the entries of S to the entries of T through Eq. 12 and Eq. 4 to get,[
S11 S12

S12 S22

]
=

[
T11

T12
− 1
T12

− 1
T12

T22

T12

]
. (13)

We now wish to evaluate the time-t map U . The evaluation is non-trivial, how-
ever, due to the infinitely many (though periodic) dirac delta functions that constitute
the quantum state in the position representation. The difficulty in computing this sum
represents a divergence between the classical and quantum scenarios. In the quantum
case, the careful summing is needed to keep track of the different phases that the quan-
tum trajectories “pick up” as they propagate from each of the equivalent lattice sites.
Hence, the wavefunction can interfere with itself. This effect does not show up in the
classical case. Here, the states are represented with probability distributions that have
no phase information and hence cannot cancel each other out.

In evaluating the propagator U , the amplitude of the transition qi → qf is the sum
of transitions from the equivalent positions qi = Qi/N + k to the positions qf =
Qf/N + l, where Qi, k, Qf , and l are integers. Using Eq. 10, this sum is given by,

Uf,i =

√
iT12

N

〈
exp

[
iπ

NT12
{T11(Qi +mN)2 − 2(Qi +mN)Qf + T22Q

2
f}
]〉

m

,
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with the normalization derived by the authors in [1]. These authors carry out this
difficult Gauss sum, from which we plug in the Cat Map entries of T ,

Uf,i =

√
i

N
exp

[
i2π

N
{Q2

i −QiQf +Q2
f}
]
. (14)

This is the time-t map which we iteratively apply to our initial quantum state |ψ0〉 to
obtain dynamics. The eigenvalues and eigenvectors of this operator give insights into
the behavior of the quantum dynamics. From the Schroedinger equation, we recognize
the eigenvalues of U with the phases e−iωt, were ω is the energy in geometrized units.
The eigenstates are the states which remain fixed in time while accruing a phase factor
e−iωt in each time step. Since the entries of U are of the form ei2πr, with r being
rational, the eigenvalues themselves must be of this same form. With this in hand we
immediately see that Un = I for some finite integer n. The with the rational numbers
of the eigenvalues r1, r2,...,rN , we associate n with the least common multiple of their
denominators,

Un =

 ei2πr1n . . . 0
...

. . .
...

0 . . . ei2πrNn

 =

 ei2πR1 . . . 0
...

. . .
...

0 . . . ei2πRN

 = I,

where the Ri are integers. This feature of the quantum time-t map is one of the major
differences between the quantum and classical scenarios. The eigenstates of U , as seen
in Section 3.4, seem to have somewhat chaotic forms. Eigenstates give a rich look into
the chaos inherent in quantum systems. We do not give too much attention to them, but
much analysis is applied to them in references such as [2],[4].

3.3 Husimi Distribution
Now that we have established the dynamics of our quantum system via the time-t map
U , we want to iteratively apply U to initial states and observe the evolution. In the
classical case we were able to observe the evolution of a state as a point in phase space
subject to the repeated application of a linear time-t map. In the quantum case it is not
as straight forward to observe the dynamics in a “phase space”. The problem is that
in general, quantum states cannot be represented as a probability distribution in phase
space, let alone a single point with a definite position and momentum. The latter fact
is easily explained by the Heisenberg uncertainty principle. The former is more subtle.
The probability density ρ(q, p) in phase space is used to give the probability ρdqdp that
the particle has position between q and q+dq, and momentum between p and p+dp. In
quantum mechanics it is meaningless to assign a probability to this “outcome” because
the particle cannot have such a well defined position and momentum (again, by the
Heisenberg uncertainty principle).

Although the concept of classical phase space does not translate directly to the
quantum scenario, there are several analogues of phase space which allow us to visual-
ize the quantum dynamics so as to compare and contrast them with the classical ones.
The phase space analogue which we use to visualize our dynamics is the Husimi dis-
tribution. Simply put, the Husimi distribution of a state |ψ〉 is a probability distribution
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on phase space in which the value at (q, p) is given by the inner product of |ψ〉 with
the coherent state |α(q, p)〉. Coherent states are quantum states which closely resemble
classical classical states. First, their uncertainty is minimal (saturating the Heisen-
berg inequality) and equally balanced between position and momentum. Second, they
maintain this minimal and balanced uncertainty as they evolve in time. Using travel-
ing Gaussian coherent states, the Husimi distribution defined on our state of discrete
amplitudes is,

H(q̄, p̄) = |〈α(q̄, p̄)|ψ〉|2 =

∣∣∣∣∫ dq〈α|q〉〈q|ψ〉
∣∣∣∣2 =

∣∣∣∣∣∑
n

ψne
− (qn−q̄)2

2 −ip̄qn

∣∣∣∣∣
2

. (15)

We keep in mind the fact that the subtraction qn − q̄ is mod(1) to conform with the
periodicity of our system. Hence the gaussian nature of the coherent state is wrapped
around the torus. The region of “overlap” between the left tail of the Gaussian with
its own right tail (due to the periodicity) is not problematic since the values there have
already diminished to a negligible amount. Furthermore, we note that the normalization
of the Gaussian is ignored because we are only interested in the relative intensities in
the Husimi distribution.

The “master equation” which we use to obtain the time evolution of the Husimi
distribution is,

H(q̄, p̄, tm) = |〈α(q̄, p̄)|Um|ψ0〉|2. (16)

For the purposes of implementing the Husimi distribution as used in the next sec-
tion, we introduce two conceptual modifications. First, we recognize that by setting
p̄ = 0, the Husimi distribution becomes the square of the convolution of our wavefunc-
tion ψn with a Gaussian distribution. So, H(q̄, 0) is the square of the state convolved
with a Gaussian function. Then, we recognize the e−ip̄qn factor as inducing a fourier
transform. Thus, we can think of the Husimi distribution as the square of the fourier
transform (introduces p̄) of the convolution (introduces q̄) of the state |ψ〉. In the fol-
lowing section we refer to the convolution as the “windowing” and the Gaussian as the
“windowing function”.

3.4 Visualizing the Quantum Dynamics Using Matlab
To visualize the Husimi distribution, we begin with an initial state ψ0 in our N -
dimensional Hilbert space (Figure 2), and act it upon U , our quantum time-t map, i.e.
ψ1 = Uψ0. For each ψi, we apply a Gaussian windowing function on the torus cen-
tered at each coordinate (Figure 3) thereby emphasizing the value at that coordinate and
the other values centered around it. Each of the resulting windows then contain con-
figuration information about the overlap between ψ and the coherent states described
above. We then recover the momentum information by performing a discrete Fourier
transformation on each of these windows. The resulting states in the transformation
domain are then temporarily stored in an N × N complex-valued matrix, denoted
M. Once we’ve windowed each coordinate, the modulus of each component ofM is√
H(q, p). We plot

√
H as a greyscale function of phase space as seen in the image

sequence of Figure 4.

7



The unitary matrix U that we are using can be diagonalized and its eigenvectors
can be recovered. Being able to visualize quantum states, we are, in effect, able to
visualize these eigenstates by extracting the eigenbasis from U . When visualized, these
images appear invariant as expected, yet their values rotate about a phase equal to their
associated eigenvalues in complex space. The images in Figure 5 are three examples
of eigenstates, chosen with N = 441.

As another treat, the dynamics appear to be smooth and continuous when mapped
onto a torus as seen in Figure 6.

4 Comparison of the Classical and Quantum Dynamics
The most apparent difference between these two dynamics is that the quantum evo-
lution is periodic in time, while the evolution of the classical system leads to chaos.
However, in the classical limit of the quantum system (N → ∞), the period tends to
infinity and we expect the chaotic classical dynamics to be restored.

Even without taking the classical limit, the quantum dynamics does retain some
features of the classical dynamics. In Figure 7 we present a side by side comparison
of the quantum and classical evolutions for several early time steps. The divergence in
behavior between the two cases becomes apparent only after the quantum trajectories
begin to overlap with one another. When this interference is viewed in the Husimi dis-
tribution we can observe two localized probability densities either cancel each other out
or add together. These effects are known as destructive and constructive interference,
respectively, and are determined by the relative phases of the overlapping wavefunc-
tions (even if a single wavefunction is overlapping with itself!). In the classical case,
the individual trajectories are completely independent of each other and there is no such
interference. So, the orbit of each trajectory is not affected by the orbits of other points.
Since there are no interference effects in the classical case, we expect interference to
become negligible when taking the quantum system to the classical limit. As N goes
to infinity, the number of available positions also goes to infinity. So as a Gaussian
wavepacket (which has a smaller and smaller spread as N → ∞) evolves in time, its
overlap with itself will become far more scarce.

This investigation has shown us that the quantization of a classically chaotic system
does not always lead to similar chaos in the quantum dynamics. A further investigation
would explore the scaling properties of the system’s dynamics with N . Lastly, the
computational findings deserve to be compared to the real world quantum system that
is the diffraction grating.
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Figure 1

Classical Map Evolution Near Saddle Point

Figure 2
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Figure 3
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Figure 4

Husimi Representation of the Time Evolution of Initial Gaussian State

Figure 5
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Figure 6

The Husimi Representation on a Torus

Figure 7

Side-by-side comparison of Classical and Quantum Evolution
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