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I. Introduction 
The homoclinic tangle is an interesting property of the manifolds of certain maps.  In 

order to give more formal meaning to some intuitive claims about the homoclinic tangle, 
notably its chaotic orbits, it is useful to study the Smale Horseshoe model.  Using this 
formulation, we can connect homoclinic orbits to a model where we can more easily define 
chaotic orbits. 

The beginning of this paper will define the homoclinic tangle and show a numerical 
approximation of crossing manifolds, using MATLAB.  The paper will then introduce the 
formulation of the Smale Horseshoe map and list some interesting properties.  The paper will 
conclude by connecting the homoclinic tangle with this horseshoe model (with the visual aid of 
MATLAB), thus justifying our intuitive claim of chaotic orbits. 
 

 
II. Homoclinic Tangle: Overview 

Let f be an invertible map of Rn, and let p be a fixed point saddle.  Then a homoclinic point p' is a 
point that lies on both the stable and unstable manifolds of p. 
 
 
 
 
 
 
 
 
 
 
 
Since p' is on the stable manifold, 

fn(p')→p as n→∞. 
Since p' is on the unstable manifold, 

f-n(p')→p as n→∞. 
Then also 

fn(f(p'))→p and f-n(f(p'))→p as n→∞, 
so f(p') is a homoclinic point. 

Also, 
fn(f-1(p'))→p and f-n(f-1(p'))→p as n→∞, 

so f-1(p') is a homoclinic point. 
 

p 
p' 

f(p') 

f-1(p') 

Vs 

Vu 



Harding 
-2- 

Thus, all homoclinic points map to homoclinic points under f and f-1.  We call the orbits of such 
points homoclinic orbits. 

 
We’ve already seen examples where the stable and unstable manifolds overlap.  For example, the 
undamped Duffing equation x'' - x + x3 = 0: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

If, on the other hand, the stable and unstable manifolds do not overlap but cross transversally, 
then they must cross over each other an infinite number of times.  This creates a complex 
structure called the homoclinic tangle.  In order to study this behavior, consider the following 
Hénon map from Example 10.5 in Chaos: 
 

f(x,y) = (2.12 - x2 - 0.3y, x) 
Fixed point p ≈ (0.945, 0.945) 

 
Eigenvalues of Df(p): 

s ≈ -0.18 → |s| < 1 
u ≈ -1.71  →  |u| > 1 

 
In order to approximate the stable and unstable manifolds, we cite the Stable Manifold Theorem: 
 

Let f be a diffeomorphism (a smooth one-to-one map with a smooth 
inverse) of R2.  Then the stable manifold S and unstable manifold U 
of p are tangent to the eigenvectors Vs and Vu, respectively. 
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To approximate the stable and unstable manifolds, we use the technique of You, Kostelich and 
Yorke in “Calculating Stable and Unstable Manifolds,”1 which uses as background the Stable 
Manifold theorem.  We pick a point a along Vu within ε of p.  Then we consider line segment ab, 
where b=f(a).  We apply f to this line segment, and then iteratively apply f to all resulting line 
segments.  To approximate the stable manifold, we repeat the process with Vs and f-1. 
 
The MATLAB implementation of this code, which I created, can be seen at the end of this paper 
(in project.m).  The resulting plot can be seen below at left, compared to the full plot at right2.  
The light blue curve represents the stable manifold and the dark blue curve represents the 
unstable manifold.  The fixed point is circled in both plots. 
 
The approximated plot at left does not plot any lines, but just points.  This is because the 
sparsely-generated iterations of f would incorrectly connect points across the gap in the curve.  
This plot in fact includes one million points along each iterated line segment; however, the 
points become very spread out upon many iterations of f-1.  Many of the plotted points end up far 
outside the plotted region.  One could construct an algorithm that eliminates such points, or 
that provides more precision along the pieces of curves that are stretched the most.  However, as 
I wished to focus on the theory of the homoclinic tangle and the horseshoe map for this paper, I 
did not construct such an algorithm. 

 

 
 

At this point, we take a step back and ask what we would like to say about the 
homoclinic tangle.  It certainly seems intuitively chaotic, with the stable and unstable manifolds 
crossing transversely an infinite number of times.  However, we don’t yet have the formalism 
that allows us to make this claim.  In order to substantiate this claim, and to make other claims 
about points near a homoclinic orbit, we introduce the idea of the Smale Horseshoe Map. 
                                                
1 referenced in Chaos, Chapter 10. 
2 Chaos, Figure 10.7. 
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III. Smale Horseshoe Map 
Stephen Smale (born 1930) is an American mathematician who has published 

numerous works on dynamical systems.  In 1961, he proved the Poincaré Conjecture for all 
dimensions greater than four.3  In 1967, published “Differentiable Dynamical Systems,”4 a study 
that included his famous Smale Horseshoe model. 

This map is essentially a generalized, continuous version of the Skinny Baker map.  This 
difference, however, is key because its continuity allows us to make several formal claims about 
the map.  In the diagram below,5 it maps the square Z=ABCD to the overlapping horseshoe 
A* B* C* D*.  Inside the square, we make the assumption that it “uniformly contracts distances 
horizontally and expands distances vertically”6.  This assumption will later allow us to make 
formal claims about its Lyapunov exponents. 

 
 

Now, in order to visualize the map of fk, we ask what the maps f-1 and f2 do to the same square Z. 
 

Since f maps the square Z onto the horseshoe, then f-1 maps the horseshoe onto Z.  
Informally, we can “deform” or “reshape” A* B* C* D* from a horseshoe shape into a square (to 
determine what f-1 does to the square A* B* C* D*).  To do so, we must also deform its image 
ABCD in the same way, since both f and f-1 are continuous functions. 

 

                                                
3 Smale, S. Generalized Poincaré's conjecture in dimensions greater than four. 
4 Smale, S. Differentiable Dynamical Systems. 
5 Chaos, Figure 5.15. 
6 Chaos, Chapter 5, 216. 
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 With slightly more formalism, we can divide A* B* C* D* up into five bands (labeled 1 
through 5 in the diagram above).  The points in bands 1, 3, and 5 are not contained in the image 
of A* B* C* D* under f-1.  By contrast, the points in bands 2 and 4 are contained in the image of       
A* B* C* D*.  These bands (which can be seen as horizontal bands in the square) are the only part 
of the image that concerns us when we make our claims later, so this formalization is sufficient. 
 

The map of f2 is clear under inspection.  It forms the image below7.  If we consider the 
segments of fk(Z) that overlap Z, we notice that each subsequent iteration of f will double the 
number of overlapping vertical lines, and shrink their widths. 

 
 If we note that (f k(Z)∩Z) contains (f j(Z)∩Z) for all 0<k<j, and that (f –k(Z)∩Z) 
contains (f –j(Z)∩Z) for all 0<k<j, we can make the following claim: 

 
The overlapping region of Z and fk(Z), for any integer k, represents 
the region that remains in Z under k iterations of f. 

 
Then the intersection (fk(Z)∩Z∩f-k(Z)) represents the regions of Z that remain inside Z under 
k iterations of f or f-1.  So if we take the limit limk→∞(fk(Z)∩Z∩f-k(Z)), this will give us the pieces 
of Z that remain inside Z under infinite iterations of f or f-1.  These are called nonwandering 
points.  The intersection f2(Z)∩Z∩f –2(Z) is plotted below.8 

 
                                                
7 Chaos, Figure 5.17(a) 
8 “Chaos in Continuous Dynamical Systems.” Lecture Notes. 
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The limit of this intersection as k→∞ is a version of Cantor dust: the Cantor set crossed with 
itself.9 

 
 

With this formalism of non-wandering points, we can make several claims about the horseshoe 
map10: 

 
i.  It contains a countable set of periodic orbits of arbitrarily long periods. 
ii.  It contains an uncountable set of bounded non periodic orbits. 
iii.  It contains a chaotic orbit. 

 
These claims come from analogues of properties we proved about the Skinny Baker map.  To 
justify the third claim, we note that our “uniform expansion/contraction” assumption inside the 
square guarantees nonzero Lyapunov exponents, with one Lyapunov exponent greater than 0.  
This implies chaos for all orbits that aren’t asymptotically periodic.  Such orbits exist, and 
correspond to irrational initial conditions in the Skinny Baker map. 
 
 

IV. Formulation of Horseshoe Map from Homoclinic Orbit 
 
Now we will formulate the horseshoe map from a homoclinic orbit. 
 
Pick some nonnegative distance d. 
Since p' is on the stable manifold S, it will map (along S) within d of p after some number of 

iterations of f.  Call this number x. 
Since p' is on the unstable manifold U, it will map (along U) within d of p after some number of 

iterations of f-1.  Call this number y. 

                                                
9 Image from http://en.wikipedia.org/wiki/Cantor_set 
10 “Chaos in Continuous Dynamical Systems.” Lecture Notes. 
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Consider a box Z around the origin that extends a distance d (small) along each manifold.  If we 
iterate f on this box x times, p will remain in the box, but the box will stretch along the stable 
manifold to cover p'.  Thus, p'∈f x(Z).  If we iterate f-1 on this box y times, p will remain in the 
box, but the box will stretch along the unstable manifold to cover p'.  Thus, p'∈f–y(Z). 

11 
Then consider this box f–y(Z).  If we call the function fx+y on this box, we will end up with the box 
f x(Z).  Since they must cross over each other as in the diagram above, we have just found a map 
that is equivalent to the general horseshoe map, under a change in coordinates. 
 
I implemented this technique of “box iteration” in MATLAB.  The code (project4.m) can be 
found at the end of the paper, and its application to the Hénon map from Section II can be seen 
below.  All boxes are drawn in red.  In this case, for a d value of 0.5, I found that the first valid x=2 
and the first valid y=4.  As a result of this number of iterations and the different stretching 
factors, the boxes along the unstable manifold are stretched to a much smaller width than those 
along the stable manifold.  Nevertheless, the overlapping box can be seen in the second figure, 
enlarged from the black box in the first figure.  The two closely-grouped horizontal lines 
intersect the vertical strip, and the intersection includes a homoclinic point. 

 
                                                
11 Image modified from Chaos, Figure 10.11. 
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 The green lines represent the next iteration of f x+y on the box fx(Z), so all non-wandering 
points must be inside one of the green regions, as well.  (This region is smaller than the 
horizontal red region, and is almost just a single pixel’s width in this view.) 

 
V. Conclusion 

 Recall now our previous results about the horseshoe map: 
i.  It contains a countable set of periodic orbits of arbitrarily long periods. 
ii.  It contains an uncountable set of bounded non periodic orbits. 
iii.  It contains a chaotic orbit. 

 
 As a result of the comparison between the horseshoe map and the homoclinic tangle, we 
can now state that a single transverse homoclinic point implies the existence of (i), (ii), and 
(iii).  We can’t predict the exact locations of these orbits directly from this result, but their 
existence is guaranteed.  Notably, we have now proven our initial goal: a single transverse 
homoclinic point implies chaotic orbits. 
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Code from project.m: 
% Matt Harding 
% Math 53 Project: 
% The Homoclinic Tangle and Smale Horseshoe Map 
% project.m : Approximation of Stable, Unstable Manifolds 
  
f=@(x) [2.12 - x(1).^2 - 0.3*x(2); x(1)]; % Henon map, Example 10.5 
finv=@(x) [x(2); (-10/3)*(x(2).^2 + x(1) - 2.12)]; % Inverse 
  
p = [0.944521871910198; 0.944521871910198]; % fixed point p 
  
u_vec = [1; -0.58]; % unstable eigenvector 
s_vec = [1; -5.71]; % stable eigenvector 
  
% Normalize eigenvectors 
u_vec = u_vec./sqrt(sum(u_vec.^2)); 
s_vec = s_vec./sqrt(sum(s_vec.^2)); 
  
  
% PART 1: UNSTABLE 
x = 400; % number of points along each segment (e.g., along J = ab) 
n = 400; % number of iterations of f 
  
a_u = zeros(2, x, n); % 2 dimensions, x points, n iterations 
a_u(:,1,1)= p + u_vec.*(1e-6); % initial point along unstable eigvec 
  
for d = 2:n % iterate f n times to get each starting/ending point 
   a_u(:,1,d) = f(a_u(:,1,d-1)); 
end 
  
dir_u = a_u(:,1,2)-a_u(:,1,1); % direction of J 
for i = 2:x 
   a_u(:,i,1) = a_u(:,i-1,1) + (1/x)*(dir_u); % plot all x pts along ab 
   for d = 2:n 
       a_u(:,i,d) = f(a_u(:,i,d-1)); % plot all pts along subsequent iters 
   end 
end 
  
figure; 
hold on; 
for d = 1:n 
   plot(a_u(1,:,d), a_u(2,:,d), '.b'); 
end 
  
% PART 2: STABLE 
x = 1e6; % number of points along each segment (e.g., along J = ab) 
n = 50;  % number of iterations of f 
  
a_s = zeros(2, x, n); % 2 dimensions, x points, n iterations 
a_s(:,1,1)= p + s_vec.*(1e-7); % initial point along stable eigvec 
  
for d = 2:n % iterate f-1 n times to get each starting/ending point 
   a_s(:,1,d) = finv(a_s(:,1,d-1)); 
end 
  
dir_s = a_s(:,1,2)-a_s(:,1,1); % direction of J 
for i = 2:x 
   a_s(:,i,1) = a_s(:,i-1,1) + (1/x)*(dir_s); % plot all x pts along ab 
   for d = 2:n 
       a_s(:,i,d)=finv(a_s(:,i,d-1)); % plot all pts along subsequent iters 
   end 
end 
  
hold on; 
for d = 1:n 
   plot(a_s(1,:,d), a_s(2,:,d), '.c'); 
end 
  
axis([-2.5 2.5 -2.5 3.5]); 
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Added code from project4.m: 
% BOX AROUND FIXED POINT 
num = 1000; % pts on a side 
len = 0.5; % side length 
sideA = zeros(2,num); 
sideB = zeros(2,num); 
sideC = zeros(2,num); 
sideD = zeros(2,num); 
  
sideAinv = zeros(2,num); 
sideBinv = zeros(2,num); 
sideCinv = zeros(2,num); 
sideDinv = zeros(2,num); 
  
sideA(:,1) = p + u_vec.*(-len/2) + s_vec.*(len/2); 
sideB(:,1) = p + u_vec.*(len/2) + s_vec.*(len/2); 
sideC(:,1) = p + u_vec.*(-len/2) + s_vec.*(-len/2); 
sideD(:,1) = p + u_vec.*(-len/2) + s_vec.*(len/2); 
  
% draw box 
for i = 2:num 
   sideA(:,i) = sideA(:,i-1) + u_vec.*(len/num); 
   sideB(:,i) = sideB(:,i-1) + s_vec.*(-len/num); 
   sideC(:,i) = sideC(:,i-1) + u_vec.*(len/num); 
   sideD(:,i) = sideD(:,i-1) + s_vec.*(-len/num); 
end 
  
plot(sideA(1,:), sideA(2,:), '-r'); 
plot(sideB(1,:), sideB(2,:), '-r'); 
plot(sideC(1,:), sideC(2,:), '-r'); 
plot(sideD(1,:), sideD(2,:), '-r'); 
  
numiter = 4;    % number of forward iterations on the box 
numiterinv = 2; % number of backward iterations on the box 
  
%set up "inverse" box 
sideAinv(:,:) = sideA(:,:); 
sideBinv(:,:) = sideB(:,:); 
sideCinv(:,:) = sideC(:,:); 
sideDinv(:,:) = sideD(:,:); 
  
for j = 1:numiter % plot f(box) 
    for i = 1:num 
        sideA(:,i) = f(sideA(:,i)); 
        sideB(:,i) = f(sideB(:,i)); 
        sideC(:,i) = f(sideC(:,i)); 
        sideD(:,i) = f(sideD(:,i)); 
    end 
    plot(sideA(1,:), sideA(2,:), '-r'); 
    plot(sideB(1,:), sideB(2,:), '-r'); 
    plot(sideC(1,:), sideC(2,:), '-r'); 
    plot(sideD(1,:), sideD(2,:), '-r'); 
end 
  
for j = 1:numiterinv % plot f-1(box) 
    for i = 1:num 
        sideAinv(:,i) = finv(sideAinv(:,i)); 
        sideBinv(:,i) = finv(sideBinv(:,i)); 
        sideCinv(:,i) = finv(sideCinv(:,i)); 
        sideDinv(:,i) = finv(sideDinv(:,i)); 
    end 
    plot(sideAinv(1,:), sideAinv(2,:), '-r'); 
    plot(sideBinv(1,:), sideBinv(2,:), '-r'); 
    plot(sideCinv(1,:), sideCinv(2,:), '-r'); 
    plot(sideDinv(1,:), sideDinv(2,:), '-r'); 
end 
  
% Find a smaller region where nonwandering points reside 
% by iterating f or f-1 another (x+y) times 
for j = 1:(numiter+numiterinv) 
    for i = 1:num 
        sideA(:,i) = f(sideA(:,i)); 
        sideB(:,i) = f(sideB(:,i)); 
        sideC(:,i) = f(sideC(:,i)); 
        sideD(:,i) = f(sideD(:,i)); 
    end 
end 
  
plot(sideA(1,:), sideA(2,:), '-g'); 
plot(sideB(1,:), sideB(2,:), '-g'); 
plot(sideC(1,:), sideC(2,:), '-g'); 
plot(sideD(1,:), sideD(2,:), '-g'); 
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