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Math 53, Chaos!

Nonlinear Dynamics and Complex Structure in Financial Markets

The potential existence of chaotic behavior in financial markets has become a great interest to economists and scientists in recent years. However, while much literature on the topic exists, there is no decisive answer as to whether capital markets exhibit chaotic dynamics. For instance, while Vaidyanathan and Krehbiel, Frank and Stengos, Scheinkman and LeBaron, and Eckmann et. al all find evidence for low-dimensional chaos, others, such as Vassilicos et al find no evidence of chaos. However, most literature agrees that financial data is not independently and identically distributed (i.i.d.) and that nonlinear dynamics exist in the capital markets (Abhyankar et. al 2-3).
In my analyses I have focused on David Hsieh’s paper, Chaos and Nonlinear Dynamics: Application to Financial Markets. In his paper, the author tests various models in their explanatory power over the market’s behavior. 

Hsieh sets out by describing several chaotic maps, such as the tent map and the Henon map, which test for low-dimensional chaos, as well as the Mackey-Glass equation, 

[image: image1.emf],
which is used in high-dimensional chaotic systems
. Hsieh then outlines a mechanism for testing for chaos, namely computing the correlation dimension in various embedding dimensions after cleaning the data from autocorrelation and any linear dependence. In particular, Hsieh describes the correlation dimension as computing the slope of the graph of lognC(ε) versus log(ε), where 

[image: image2.emf]
and where n is the embedding dimension (Hsieh 1840-1847).

He argues that since chaotic maps do not fill up the entire space, the correlation dimension of such a map should remain finite in any dimension; the author then contrasts such a map with a randomly generated dataset, embedded in higher dimensional space, which should have infinite correlation dimension
 (Hsieh 1846-1847). 
Hsieh quotes Scheinkmann and LeBaron, who determine the correlation dimension of weekly stock returns to be about 6, even in 25-dimensional space
. However, as Hsieh points out, there are various non- chaotic models that can result in finite correlation dimension, such as the autoregressive conditional heteroskedasticity (ARCH)-type models. Moreover, financial markets may well follow a random walk model, but a finite dataset would not have infinite correlation dimension, according to the author. Thus, Hsieh sets out to determine the reason behind the finite correlation dimension of capital markets (Hsieh 1847). 
To do so, he uses the Brock–Dechert–Scheinkman (BDS) test, which uses the observation that if data were i.i.d, then the following would hold: [image: image3.emf]In particular, the BDS statistic, Wn,T defined as follows: [image: image4.emf], converges to the standard normal distribution (σ denotes standard error of (Cn(ε )-C1(ε )n)).  Thus, one can use this statistic to test the null hypothesis: data is i.i.d. In his test, Hsieh can strongly reject the null hypothesis, but he cannot conclude that the data exhibits chaotic behavior (Hsieh 1847-1858). 

The fact that stock market data does not follow a random walk model has several implications. Firstly, stock returns may be potentially predictable; however, market efficiency, maintaining that forecast errors of those returns are unpredictable, can still hold. Secondly, non-i.i.d. data may no longer fit the normal distributions previously used to model probability density distributions; empirics show that a leptokurtic distribution is more appropriate. Thus, while previous crashes have been explained with small but nonzero probability of occurrence, this explanation may lose credibility if data is not i.i.d. Moreover, in the random walk hypothesis, such extreme events could be viewed as responses to external shocks, while in any deterministic model, those occurrences may also be the result of the nonlinear dynamics internal to the system (Hsieh 1856). 
Hsieh then sets out to eliminate other models detected by BDS as non-i.i.d, such as moving average models (i.e changing economic fundamentals leading to shifts of average return), non-linear stochastic models, such as ARCH- type models (which approximate conditional variance changes), and low-complexity chaos models. In his examination of the first model’s ability to explain financial market dynamics, the author increases frequency to 15-minute intervals of data collection; he argues that structural changes should not exist at such high frequencies, since market fundamentals take longer periods to change. The rejection of the hypothesis that data at such high frequencies are i.i.d. enables Hsieh to eliminate the non-stationarity model from the potential explanations of the market’s behavior (Hsieh 1859). 
The author then tests for low-dimensional chaos using the locally weighted regression (LWR). This method tests the following situation. If data are generated according to xt = f(xt-1), then if xs-1 lies close to xt-1, then xs should lie close to xt. Hsieh’s analysis concludes that this model is not, in general, better than the random walk model at forecasting stock market returns (Hsieh 1863-1865). 
Finally, Hsieh tests the ability of the conditional heteroskedasticity models, such as ARCH, to explain capital market movements. The models in this family predict that the variance of the current error term is related to the variances of the previous time period's error terms. In particular, the ARCH model predicts that the returns at time t, xt , can be modeled as follows: [image: image5.emf] where zt is  i.i.d, and [image: image6.emf](vt i.i.d. and independent of z). In order to improve the predictive power of the model, Hsieh replaces σ with š, fitted values from the data. The author finds that there is a clear mean reversion in volatility, and that the resulting model is successful in capturing the nonlinear behavior of stock returns and in potentially predicting volatility (Hsieh 1870-1871). 
Hsieh’s paper resembles much of the outstanding literature on the topic, in that most authors agree that nonlinearity is a better description of market behavior than a random walk model. Moreover, several authors find ARCH a good description of market movements, although they find the model to be incomplete on some level. For instance, Skjeltorp believes that the ARCH-family lacks the ability to reproduce the fractal scaling characteristic of market movements (Skjeltorp 526); Kyrtsou and Serletis find that GARCH models financial data well, but fails to account for outliers (Hommes et. al 5), and Richards finds that including state transitions in the ARCH models enhances their explanatory power (Richards 600).  Thus, while there is some disagreement in outstanding literature, authors seem to concur on the major themes of existence of nonlinearity and the generator of such behavior: conditional heteroskedasticity. 
In my analysis, I set out by embedding the data in two and three dimensions using the time delay method. For the original (detrended) data I use a time delay of 400 days, while for the log-ed data I use a time delay of 500, since in this way the shape of the emergent objects matches up more accurately (see Figure 1 and Figure 2, respectively). I then generate various random series and embed them in 2D using T=400 (see two selected images, Figure 3 and Figure 4). When comparing the resulting diagrams, one notices two major differences: 

1. The time series data does not fill the entire object, while the random data series does, in most generations. 
2. The time series data exhibits a bulge in large values (even after the log of the data has been taken). [image: image7.jpg]NorvLog Delay Embedding
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Figure 1. Original data embedded in 2D with time delay =400.

The first characteristic is consistent with Hsieh’s statement that data exhibiting chaotic behavior does not fill up the entire phase space; the contrast provided by the randomly generated data strengthens this argument (Hsieh 1846). However, since only one dataset has presently been examined, no definitive statements can be made. 
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Figure 2. Log-ed data embedded in 2D with time delay =500.
The second characteristic is consistent with Richards’ argument that if financial markets were to exhibit fractal structure, there would be a “high probability of extreme or outlying observations” (Richards 587). Thus, the financial time series dataset appears to be more likely to exhibit large fluctuations of returns, since the large bulge indicates that high current returns could be linked to high or low returns T days ago
. Interestingly, in both the original and the log-ed data, there exists an empty space in the middle return ranges (this result is also carried onto the 3D analysis), providing further support for Richards’ argument. 
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Figure 3 and Figure 4: Two images of randomly generated data, embedded in 2D with T=400.

I also embed the time series data in 3D, using as variables (price now, price 400 days ago, price 800 days ago) and (price now, price 500 days ago, price 1000 days ago) for the original and log-ed data, respectively (see Figure 5 and Figure 6, respectively). The potential attractors that appeared in the 2D figures obtain a three-dimensional shape; interestingly, the clustered areas of the 2D non-log-ed shape turn into defined edges of the higher-dimensional object, suggesting self-intersections in the 2D figure. For the log-ed data some of the clustering for low values remains; unfortunately there are no visualization techniques for >3D to allow further analysis on the appropriate embedding dimension. 
Lastly, in a 3D image of delay time-embedded random data, high levels of clustering persist (see selected images, Figure 7 and Figure 8), filling up a large part of the resulting image; this result can serve to contrast the time-series data, which seems to outline the surface of a three-dimensional (somewhat) hollow object. This result is consistent with Hsieh’s claim that the space-filling capability of random data increase with an increase in embedding dimension, while chaotic maps are confined to a portion of the available space.
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Figure 5. Original data embedded in 2D with time delay =400.
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Figure 6. Log-ed data embedded in 3D with time delay =500.
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Figure 7 and Figure 8: Two images of randomly generated data, embedded in 3D with T=400.

Lastly, I also compute the BDS statistic using Kanzler’s MATLAB code (Kanzler 1). The resulting test statistics of 395.17 and 455.45 for the original and log-ed data, respectively, support the findings of scientists who have performed similar tests: the hypothesis that capital markets are i.i.d. can be rejected at any significance level (Abhyankar 2-3). 
While Hsieh’s results are representative of much of the outstanding literature, his paper does not comment on another recurring theme: fractal structure in financial markets. Authors, such as Richards and Skjeltorp, claim that financial markets exhibit such properties. In particular, while a random walk is considered to have fractal dimension of 1.5, the capital market has been found to have a fractal dimension 1.3-1.4; financial markets exhibit long term memory than randomly generated data, on all time scales. Thus, in agreement with a deterministic fractal system, any period influences any future such periods across all length scales (for instance, any one-week period influences all future one week periods; any 10 minute period influences any future 10 minute periods). Moreover, a fractal dimension of [1, 1.5) is said to be persistent; this means that any upward change in price is more likely to be followed by a positive change in price than in a random model. Skjeltorp maintains that these property capture investor bias, market sentiment, market trends and fads, etc. 
My measurements of the box counting dimension in 2D and of the correlation dimension at various embedding dimensions are consistent with this estimate of fractal dimension; however, since the margin of error is quite large in the slope estimation, one cannot definitively determine whether the stock market’s fractal dimension is significantly different from 1.5 and whether any such difference is due to the inherent properties of the financial markets or due to a random occurrence (See Figure 9 and Figure 10 for box-counting dimension estimates of time series data and random data, respectively, see Figures 11-16 for correlation dimension of time series and random data in 2D, 3D, 10D, respectively
). 
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Figures 9 and 10: Box counting dimension of time series and random data, respectively.
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Figures 11 and 12: C.D. of time series and random data in 2D, respectively. Dotted line has slope = 3/2.
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Figures 13 and 14: C.D. of time series and random data in 3D, respectively. Dotted line has slope = 3/2.
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Figures 15 and 16: C.D. of time series and random data in 10D, respectively. Dotted line has slope = 3/2.
However, if the capital markets do exhibit fractal structure, there would be some interesting implications. Firstly, a fractal dimension < 1.5 would depart from the rational behavior/ efficient market hypothesis (EMH), since the latter assumes a linear information assimilation model
. The above-mentioned persistent market behavior and lower fractal dimension than that of a random walk implies non-normally distributed returns. In particular, market memory and the existence of fads, investor bias, market sentiment, etc., leads to a multi-variable and nonlinear model of investor behavior; therefore, assimilation of information occurs in an uneven fashion, and a different probability distribution function (pdf) of market returns. In particular, the nonlinear manner of information release, coupled with the above-described investor reaction model, would lead to periods of high and low volatility, resulting in a leptokurtic pdf
. 
Such a model, however, may also lead to infinite or undefined variances, which would have interesting implications about investor behavior. In particular, in traditional models, risk is directly related to the variance of the distribution; therefore, investors basing their decisions on a normal pdf for market returns may underestimate risk. Furthermore, options pricing is based on the assumption that stock returns are i.i.d.; hedging options may become very difficult if volatility does not approach a limit. However, some models for option pricing based on the Levy distribution have been put to practice and have shown quite promising results. Those do not, however, account for the time-dependence of volatility that is described in much of the related literature (Skjeltrp 526). 

In conclusion, my analysis supports the results in the outstanding literature: the hypothesis that capital markets follow a random walk model can be strongly rejected. Moreover, like Hsieh, I find that my data does not fill up the entire space in the embedding dimensions of 2 and 3, while randomly generated data does, in most cases. Furthermore, my fraction dimension estimates resemble the results obtained by other authors; however, due to large margins of error, I cannot conclude, based on my results only, that my dataset exhibits fractal structure. The potential existence of internal nonlinear dynamics and of fractal structures in capital markets may have strong implications about security pricing, economic events, and investor behavior. However, while much of the outstanding literature agrees on the existence of the above characteristics, particular details differ across papers (such as correlation dimension estimates); to a large extent, results depend on the particular method used, which makes reconciliation of various results somewhat difficult. Furthermore, some authors use methods for detecting nonlinearity and/or chaos that have not been outlined in the present paper. For instance, Barkoulas et. al use Kolmogorov entropy (Barkoulas et. al 234) and Hallegatte et. al use bifurcations (Hallegatte 26 -30et. al ) in their examination of capital market dynamics. A model with full explanatory power that encompasses the results obtained by different authors is still to come. 
Appendix A: Summary of Existing Literature
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The above tables have been sourced from (Abhyankar et. al 2-3).

Appendix B: Correlation Dimension Estimates with T=100
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Figures 17 and 18: C.D. of time series and random data in 2D, respectively. Dotted line has slope = 3/2.
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Figures 19 and 20: C.D. of time series and random data in 3D, respectively. Dotted line has slope = 3/2.
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Figures 21 and 22: C.D. of time series and random data in 4D, respectively. Dotted line has slope = 3/2.
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Figures 23 and 24: C.D. of time series and random data in 10D, respectively. Dotted line has slope = 3/2.
Bibliography

· Abhyankar, A., L. Copeland, and W. Wong. "Uncovering Nonlinear Structure in Real-Time Stock-Market Indexes." Jounal of Business & Economic Statistics 15N1(1997): 1-14.

· Barkoulas, John, and Nickolaos Travolos. "Chaos in an emerging capital market? The case of the Athens Stock Exchange." Applied Financial Economics 8(1998): 231-243. 

· Barnett, William, Alfredo Medio, and Apostolos Serletis. "Nonlinear and Complex Dynamics in Economics." Econometrics 9709001(1997): 1-88.Benhabib, Jess, "On Cycles and Chaos in Economics." Studies in Nonlinear Dynamics and Econometrics 1(1996): 1-2.

· Crilly , A., R. Earnshaw, and H. Jones. Applications of Fractals and Chaos. 1. Berlin, Germany: Springer-Verlag, 1993.Day, Richard, "The Emergence of Chaos from Classical Economic Growth." The Quarterly Journal of Economics 98N2(1983): 201-213.

· Hallegatte, Stephane, Michael Ghil, and Patrice Dumas. "Business Cycles, Bifurcations and Chaos in a Neo-Classical Model with Investment Dynamics." Elsevier Science (2006): 1-40. 

· Holyst, J., M. Zebrowska, and K. Urbanowicz. "Observations of deterministic chaos in financial time series by recurrence plots, can one control chaotic economy?." The European Physical Journal 20(2001): 531-535.

· Hommes, Cars, Sebastiano Manzan, and "Testing for Nonlinear Structure and Chaos in Economic Time Series." Journal of Macroeconomics (2005):

· Hsieh, David. "Chaos and Nonlinear Dynamics: Applications to Financial Markets." Journal of Finance 46,N5(1991): 1839-1877.

· Kanzler , Ludwig. "MATLAB module to calculate Brock, Dechert & Scheinkman test for independence." IDEAS: Economics and Finance Research. 30 Jun 1998. University of Connecticut. 2 Dec 2007 <http://ideas.repec.org/c/boc/bocode/t871803.html#provider>.

· Liebovitch, Larry, and Daniela Scheurle. "Two Lessons from Fractals and Chaos." Complexity 5N4(2000): 34-43.

· Richards, Gordon. "A Fractal Forecasting Model for Financial Time Series." Journal of Forecasting 23(2004): 587-602.

· Skjeltorp, Johannes . "Scaling in the Norwegian stock market." Physica A: Statistical Mechanics and its Applications 283(2000): 486-528.

� Some authors have used this model in their search for chaos in financial markets. See, for instance, Hommes et. al. 


� Hsieh argues that random data will uniformly fill any dimension space, and that 


C.Dn (rand) = n; therefore limn→∞ = ∞.


� Several other authors have arrived at similar results. See Vaidyanathan and Krehbiel (1992), and Frank and Stengos (1989), referenced in Abhyankar et. al.


� T here indicates the time delay: T=400 in the original data, and T=500 in the log-ed data. 


� The embedding is based on a time delay of T = 400. However, correlation dimension estimates do not seem to be dependent on time delay, when time delay is in the same order of magnitude. This can be seen in Appendix B, where I show correlation dimension diagrams for T=100; the correlation dimension estimates in all embedding dimensions do not appear to differ significantly from the those obtained when using T = 400. 


� That is to say, past information has already been reflected in security prices, and investors assimilate and respond to new information instantly. It is this hypothesis that leads to the popular conclusion that stock returns are i.i.d., since the linear model implies normally distributed returns. 


� A leptokurtic distribution is characterized by a high peak around the mean and fat tails. 
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