
1 Introduction

In the oft intersecting worlds of physics and mathematics, one simple system allows
for some extremely interesting analysis by hardened veterans of both fields. In
basic definition and concept, the transformation of the popular game of billiards
into a strictly mathematical system is elementary. However, the actual analysis
of such a system proves to be a veritable obstacle course of some truly complex
mathematics. The goal of this paper is to examine the formalism behind some
billiards constructions as well as develop some tools to better understand their
dynamics.

2 Basic Definition and Construction

In the conventional sense, a billiard game consists of a rectangular table with six
pockets and several ”hard” balls. What we are interested in, however, is somewhat
more complicated.

Definition 1. Let D ⊂ R2 be the closure of a bounded, connected domain with
smooth or piecewise-smooth boundary δD. We put a set of restrictions on δD as
follows:

(i) δD is a union of a finite set of smooth, compact curves with degree of
smoothness l ≥ 3. So:

δD = Γ =
⋃n

i=1 Γi

(ii) Γi can only intersect each other at their end-points.

(iii) An orientation is assigned to each Γi such that the billiard domain lies to
the left at all times. Also, the second derivative of Γi (parametrized by
arclength) is either zero everywhere on Γi or zero nowhere on Γi. So we
break up the boundary according to where inflection points occur.

(iv) Let Γj and Γk be two boundary components where Γj is a ’focusing’ curve
and Γk is a ’dispersing’ curve. They may NOT intersect at any point q∗∈
Γj ∩Γk such that the angle between their respective tangent vectors at q∗ is
0. This angle is called the interior angle.

We call D a billiard table and Γ its boundary. The motion of the ’ball’ is given by
the free movement of a point in D with perfectly elastic collisions following the
classical Law of Reflection.

Note: The class of billiards which have been excluded by our restrictions on
the boundary as well as unbounded tables are not covered in this paper. Also, the
terminology in part (iv) will be covered later.
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Given restriction (iii), we are able to classify Γi into three separate categories.
Each component curve can either be a straight line segment, a focusing (convex)
curve or a dispersing (curve). This terminology merely refers to what the boundary
curve would do if a set of parallel trajectories hit it. For example, a dispersing
curve would increase the distance between the trajectories and a focusing one would
decrease it (atleast in a small neighborhood around the set of collision points). As
this classification is directly related to the second derivative restriction, we can
assign a curvature K to each Γi.

K =


0, if line segment

−||Γ′′i ||, if focusing curve
||Γ′′i ||, if dispersing curve

3 Phase Space and Flow

As our billiard table is in two dimensions, we require two canonical coordinates
q1, q2 to specify the point’s location on the plane. The magnitude of the velocity
is conserved at all times so we simply set it to 1. Now we can use an angle ω
to fix the direction of velocity, and with q1, q2, these three coordinates completely
define a particle’s dynamics. The set of points corresponding to all allowed values
of q1, q2, ω gives us the phase space of the billiard. Note that the phase space is
3-dimensional. We denote it using Ω.

Ω = (q1, q2, ω) = D × S1

We tweak Ω a little bit more to satisfy continuity. Let Γ̃ ∈ Γ be the subset of the
boundary given by removing all the intersection (corner) points. Then all bound-
ary points (q1, q2, ω−) are identified with (q1, q2, ω+) where (q1, q2) ∈ Γ̃ and ω− and
ω+ represent precollision and postcollision velocity direction for a trajectory which
collides at (q1, q2). This is no longer visualizable, but fortunately, we only really
need to realize that we have made the flow continuous over regular collision points.

We now realize that at some points of our billiard table, the trajectory is no
longer clearly defined. After all, what happens when the particle hits some type
of corner or grazes the boundary? Since the ’ball’ has no dimensions of its own,
these problems cause much more of a headache than a true physical system. For
now, let us denote by Ω̃ ⊂ Ω the piece of phase space where trajectories exist for
all time t ∈ (−∞,∞).

We are finally in a position to define a billiard flow Φt.

Φt : Ω̃ → Ω̃ with t continuous and ∈ R

Φt takes a point in phase space and maps it to where it will be once time ’t’ has
passed. Every curve in phase space, therefore, corresponds to a trajectory of the
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flow Φt. The projection of the curve onto the billiard domain D simply gives us a
set of lines and collision points that the moving particle would draw out.

Note: There is a family of billiards where the domain is not bounded. We can
project such a billiard domain onto a 2D Torus so that D ⊂ Tor2 by identifying
the sides. But we exclude such billiard domains for our purposes.

Returning to the Flow map on the phase space, let us try to construct a more
definitive description. Take a point (q−1 , q

−
2 , ω

−) ∈ Ω and look at where the tra-
jectory will end up after a time t ∈ R. This new point (q+1 , q

+
2 , ω

+) ∈ Ω is given
by Φt(q−1 , q

−
2 , ω

−). There are 2 distinct possibilities here. Either the trajectory
experienced a collision during time t, or it did not. The map for no collision is
simple:

(q+1 , q
+
2 , ω

+) = Φt(q−1 , q
−
2 , ω

−) = (q−1 + t cosω−, q−2 + t sinω−, ω−)

The case where there is a collision, however, proves a bit more complicated. Let
there be one regular collision at a boundary Γi during time t. For our convenience,
and to be able to properly define the map, we introduce some new variables.

(q1, q2) : The collision point on the boundary.
T : The tangent vector to the boundary at (q1, q2).
s− : The time it takes to arrive at the collision point from (q−1 , q

−
2 )

s+ : The time it takes to get from (q1, q2) to (q+1 , q
+
2 ).

γ : The angle between T and the axis spanned by vector q1
ψ : The angle between post-collision trajectory and T.

Now, we can explicitly state the flow map in terms of these new variables.

q−1 = q1 − s− cosω− q+1 = q1 + s+ cosω+

q−2 = q2 − s− sinω− q+2 = q2 + s+ sinω+

ω− = γ − ψ ω+ = γ + ψ

3.1 Measure Preserving Flow

Our goal here is to find a Lebesgue measure and check whether it is invariant
under the flow map. Let r be the arc-length of Γi. Then we can use the following
relations to eventually compute the volume form of the phase space. First, we
note the following:

dq1 = cos γdr
dq2 = sin γdr
dγ = −Kdr

Note that Γi is always oriented such that the billiard domain D is to its left. This
was a choice we made when assigning curvature. Then we differentiate the flow
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equations and plug in the arclength parametrizations. This will allow us to find an
infinitesimal volume in phase space around the initial and final trajectory points.

dq−1 = dq1 − cosω−ds− + s− sinω−dω−

= cos γdr − cosω−ds− + s− sinω−dω−

dq−2 = dq2 − sinω−ds− − s− cosω−dω−

= sin γdr − sinω−ds− − s− cosω−dω−

dω− = −dγ − dψ

= −Kdr − dψ

And

dq+1 = dq1 + cosω+ds+ − s+ sinω+dω+

= cos γdr + cosω+ds+ − s+ sinω+dω+

dq+2 = dq2 + sinω+ds+ + s+ cosω+dω+

= sin γdr + sinω+ds+ + s+ cosω+dω+

dω+ = −dγ + dψ

= −Kdr + dψ

Subbing in for dω in each of the equations, we get a set of maps from (r, s, ψ) to
(q±1 , q

±
2 , ω

±).

dq−1 = cos γdr − cosω−ds− + s− sinω−(−Kdr − dψ)
= (cos γ − s−K sinω−)dr − cosω−ds− − s− sinω−dψ

dq−2 = sin γdr − sinω−ds− − s− cosω−(−Kdr − dψ)
= (sin γ + s−K cosω−)dr − sinω−ds− + s− cosω−dψ

dω− = −Kdr − dψ

And

dq+1 = cos γdr + cosω+ds+ − s+ sinω+(−Kdr + dψ)
= (cos γ + s+K sinω+)dr + cosω+ds+ − s+ sinω+dψ

dq+2 = sin γdr + sinω+ds+ + s+ cosω+(−Kdr + dψ)
= (sin γ − s+K cosω+)dr + sinω+ds+ + s+ cosω+dψ

dω+ = −Kdr + dψ

From here it is a simple process to create the Jacobian matrix and find its
determinant. The coefficients of the system of equations gives us the matrix quite
easily. We can use the result to write an expression for the differential volume
forms at the two points.
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J −=

 cos γ − s−K sinω− − cosω− −s− sinω−

sin γ + s−K cosω− − sinω− s− cosω−

−K 0 −1


J +=

 cos γ + s+K sinω+ cosω+ −s− sinω−

sin γ − s+K cosω+ sinω+ s− cosω−

−K 0 1


Finally, we can calculate the Jacobian of the maps by taking the determinants.

det(J −) = − sin(γ − ω−) = − sin(ψ)
det(J +) = − sin(γ − ω+) = − sin(−ψ) = sin(ψ)

The infinitesimal phase space volume elements at (q±1 , q
±
2 , ω

±) can now be writ-
ten in terms of variables that are parameters of the boundary curve and the time
dependence. We also know that since the flow acts over a total time t, a constant,
s−+ s+ = t. Taking the derivative, we get the result ds−+ds+ = 0 or ds− = ds+.
This result comes in handy when evaluating the effect of the flow map on a volume
element in phase space.

From the Jacobians, we have:

dq−1 dq
−
2 dω

− = J −drds−dψ = − sinψdrds−dψ
dq+1 dq

+
2 dω

+ = J −drds+dψ = sinψdrds+dψ
ds− = ds+

And therefore,

dq−1 dq
−
2 dω

− = dq+1 dq
+
2 dω

+

Lemma 1. If for some time t ∈ R a trajectory in the phase space experiences a
regular collision, then the Flow map Φt : Ω̃ −→ Ω̃ preserves the measure dq1dq2dω
on Ω̃.

If there are no collisions during time t, then we have a different representation
for Φt. Note that t is a constant and as there are no collisions, ω− = ω+ = ω for
ω some constant. So taking the map, we differentiate to find a somewhat obvious
result.

(q+1 , q
+
2 , ω

+) Φt

→ (q−1 + t cosω−, q−2 + t sinω−, ω−)
dq+1 = dq−1 , dq+2 = dq−2 , dω+ = dω−

Which gives us, yet again:

dq−1 dq
−
2 dω

− = dq+1 dq
+
2 dω

+

Lemma 2. If for some time t ∈ R a trajectory in the phase space experiences no
collisions, then the Flow map Φt : Ω̃ −→ Ω̃ preserves the measure dq1dq2dω on Ω̃.
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This measure is a Lebesgue measure on Ω.

dµ
Ω̃

= dq1dq2dω

The particle moves in two dimensions. With the lack of any complicating
potential function and a conserved velocity magnitude, the change in momentum
can be represented with the single parameter of velocity direction. Clearly, dµ

Ω̃
is

the Liouville Measure dq1dq2dω of our system .

3.2 Irregularities and other Considerations in Flow

It becomes readily apparent that there are points in phase space where the dy-
namics of the system are not clearly defined. Up to now, we have had the luxury
of considering only an easy-to-work-with subset of Ω. Let us examine a couple
of the issues that lead to our aggravating inability to include all points of phase
space, and hopefully, find some resolutions.

Proposition 1. If trajectory is not defined for all t ∈ R then there is some finite
time tf such that for t > tf the trajectory started at (q1, q2, ω) at t = 0 no longer
exists. This may happen in one of several ways:

(i) The particle hits some corner point (q1, q2, ω) ∈ Γ∗ where Γ∗ = Γ\Γ̃.

(ii) The trajectory has an accumulation point ta finite in R.

3.3 Accumulation Point of Collision Times

Let us examine this phenomenon first. Let {tn} represents the series of collision
times of the given trajectory. If limn→inf {tn} −→ ta for some finite ta ∈ R, then
ta is the accumulation point of time. Note that if this were the case, then for some
finite time t > ta, the particle experiences infinite bounces. Indeed it obviously
follows that a trajectory satisfying Proposition 1(iii) is not defined for all t. If
there is an accumulation point for time, then there must be an accumulation point
(q1a, q2a) ∈ Γ where limt→∞(q1, q2) −→ (q1a, q2a). So either

(1) q∗= (q1a, q2a) ∈ Γ∗, a corner point, or

(2) q̃= (q1a, q2a) ∈ Γ̃, a regular point.

3.3.1 Accumulation Points at a Positive Angle Corner Point

Chernov presents an elementary inductive argument to eliminate possibility 1, but
here we choose a more rigorous path. We will set up several pieces of the proof
before consolidating it into a theorem.

Let there be a neighborhood around the corner point q∗ given by:
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Nε(q∗) = {q ∈ D : ||q − q∗|| < ε, ε > 0}

We also define the following items:

qi The i-th collision point within the neighborhood Nε(q∗). The very
first collision point in Nε(q∗) is therefore q1 ∈ Γ1.

Γ1, Γ2 The two boundaries that form q∗.
θi An angle defined only at each collision point. We define it as

the inside angle between the velocity vector at qi and the tangent
vector T of the boundary of collision. Note that if a trajectory
link is not incident upon Γ1 or Γ1 then θi is no longer defined.

γ The interior angle of the corner q∗.

Assumption 1. For the sake of convenience, we assume that the first collision point
in Nε(q∗) occurs on Γ1. Also, we let γ ∈ (0, 2π) and θ1 ∈ (0, π) and conduct our
analysis over their allowable values. Finally, we set the curvature of the boundaries
to zero (flat) for now.
Observation 1. Trivially, if γ ∈ [π, 2π), then a trajectory entering Nε(q∗) bounces
once at q1 and then experiences no other collisions regardless of initial angle θ1 ∈
(0, π). This is equivalent to an accumulation point on a regular boundary point
and will be treated later.
Observation 2. If γ ∈ (π/2, π) then we may have one of two situations. If initial
angle θ1 is ∈ (π − γ, γ] then again we have only one collision at q1. But for
θ1 ∈ (γ, π) we have exactly two collision points and then the trajectory leaves
Nε(q∗). Also note that if θ1 < π−γ, then there was a local collision on Γ2 prior to
q1 which violates our assumptions if the collision point q− ∈ Nε(q∗). Otherwise,
such a trajectory also leaves with one collision at q1.

Finally, we come to γ ∈ (0, π/2), where the main results lie. To begin, we
define two maps L : S1 → S1 and R : S1 → S1. These two maps effectively act as
our collision maps on only one parameter, namely θi. L maps θi from a collision
point i in the ’lower’ boundary Γ1 to θi+1 at Γ2. R does a similar task from the
’upper’ boundary to the ’lower’ one. Together, these two maps deterministically
define every future collision angle given an initial θ1.

L(θ) = γ + π − θ

R(θ) = −γ + π − θ

The first thing to realize is that the set G of alternating mappings (in other words
a ’trajectory’ on the set spanned by θi) given by {I,L,R,LR,LRL,RLR . . .} is a
group (G, ◦) under function composition. The checking of this fact is elementary
and has been omitted. Note that I is the identity element and more importantly
that L and R are their own inverses (from which one can construct the other
inverses and ultimately be able to analytically trace backwards the trajectory
through θ-space). We now can use the maps in an iterative capacity. Given n ∈ N
collisions, we can define the angle
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θn = gθ1 where g ∈ G is and element of size n− 1.

We assumed that the very first collision happened on the ’lower’ boundary, so
the L map is applied first. Now we also realize that n being odd or even decides
which boundary the last collision point is on and then we begin construction.

First for the composite maps:

LR = 2γ + θ

RL = −2γ + θ

And by induction, this yields:

(LR)N = 2Nγ + θ

(RL)M = −2Mγ + θ

If n is odd, qn is on the ’lower’ boundary:

θn = RL . . .RLRLθ1
= (RL)

n−1
2 θ1 = −(n− 1)γ + θ1

If n is even, qn is on the ’upper’ boundary and we also change to initial pa-
rameter θ2:

θn = LRL . . .RLRLθ1
= (LR)

n−2
2 Lθ1 = (LR)

n−2
2 θ2

= (n− 2)γ + θ2

Now let there be some θn such that, after the the n-th collision, the particle
no longer collides with Γ1 or Γ2. It is simple to see that for the two cases of odd
and even n, this sets a limit on n. For odd n:

0 < θn ≤ γ

Which, we solve:

θn > 0 θn ≤ γ
−(n− 1)γ + θ1 > 0 −(n− 1)γ + θ1 ≤ γ

n < θ1
γ + 1 n ≥ θ1

γ

And for even n:

π − γ ≤ θn < π

Which, we solve and substitute in θ2 = γ + π − θ1:
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θn ≥ π − γ θn < π
(n− 2)γ + θ2 ≥ π − γ (n− 2)γ + θ2 < π

nγ − γ + π − θ1 ≥ π − γ nγ − γ − θ1 + π < π

n ≥ θ1
γ n < θ1

γ + 1

Now, we substitute in π− θ1 = α where α is the angle the incoming trajectory
makes with Γ1 at the first collision point. This is for ease of visualization as our θ
seems a bit counterintuitive. Combined with the restrictions above, we note that
for both odd and even n, we get the same result.

π

γ
− α

γ
≤ n <

π

γ
− α

γ
+ 1

And it follows that since n ∈ N, that there must exist only one n that fits the
above condition. Also, as α 6= 0, we finally have the following theorem. Note that
for any corner point we can use the idea of approximation to see that for really
small ε any type of boundary is a line segment.

Theorem 1. If a trajectory enters a neighborhood Nε(q∗) around the corner point
q∗ with interior angle γ > 0, then given that the first collision does not occur at q∗,
the trajectory MUST leave within π

γ + 1 bounces. There may be no accumulation
points at a corner of positive interior angle.

3.3.2 Accumulation Points in Cusps

Definition 2. A cusp is defined as a corner with interior angle zero

Observation 3. A cusp can only be made by a combination of a dispersing side and
a flat side or two dispersing sides. By Def 1(iv), we cannot have a cusp created by
a dispersing side and a focusing side.

Lemma 3. If a billiard particle enters a neighborhood of a cusp corner, then within
a finite number of collisions, the trajectory will exit the neighborhood.

Proof. Let the cusp occur at a point q∗ and take a trajectory that enters the
neighborhood given by:

Nε(q∗) = {q ∈ D : ||q − q∗|| < ε, ε > 0}

For collision points qi in Nε(q∗), let di denote the perpendicular distance from q∗

to a line drawn along the incoming trajectory segment of the i-th collision point.
Every time the partile collides with a dispersing wall, the positive curvature ensures
that the perpendicular distance di increased. For flat walls, a curvature is zero, we
note that di is left unaltered. So, for any cusp point, di+1 ≥ di. As a cusp must
have a dispersing side and the particle can not bounce twice on the same wall (for
flat and dispersing at least), every two iterations/collisions, we have di+2 > di.
It follows that no matter where the first collision in Nε(q∗) is, that eventually,
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for some i ≥ 2, di > ε. By definition of di, the (extended) trajectory of the i-th
collision point is tangent to a circle of radius di around q∗, and as a tangent can not
lie within a circle, ||qi − q∗|| > ε meaning that the trajectory has left Nε(q∗).

And finally, we state a theorem written by Halpern in his study of ’Strange
Billiard Tables’ along with an observation.

Observation 4. Given a regular collision point, the curvature of a dispersing wall
and a flat wall necessitates that any non-grazing trjectory will leave a neighborhood
around it.

Theorem 2. There can be no accumulation points of collision times on a focusing
wall with a bounded third derivative and nowhere vnishing curvature.

We note that from Def 1 restrictions that Halpern’s theorem applies to all of
our billiard tables. In conjunction with the rest of our Lemmas, we have ruled out
the possibility of accumulation of collision points.

3.4 Corner Point Collision

Take some non boundary point q ∈ D where q = (q1, q2) and a corner point q∗.
Quite trivially, An angle ω is uniquely defined for each point q given that q∗ is
immediately accessible from q. Therefore, the set of all points x ∈ Ω (the phase
space) given by x = (q1, q2, ω) that collide with q∗ first forms a two dimensional
hypersurface embedded in the 3D Phase Space Ω.

Via the fact that the flow is l − 1 smooth at regular collision points (though
important, we do not prove it here), we arrive at the following theorem:

Theorem 3. The set given by Ω\Ω, namely the set of all phase space points
where the dynamics are not clearly defined, is a countable union of two-dimensional
hypersurfaces embedded in Ω.

This, fortunately, means that the measure of Ω\Ω̃ is zero and the flow can be
said to be defined µ-almost everwhere. To wrap that up, we can now normalized
the Lebesgue measure by integrating over the entire phase space.

dµ
Ω̃

= dµΩ = 1
2π(Area)

dq1dq2dω

4 Collision Map and Space

We turn to examining a subset of Ω known as the collision space. This is a
hypersurface embedded in phase space and serves as a useful tool in billiards
analysis. Like how Ω consists of points in D × S1, the collision space that we
construct is M = Γ × S1, the subset of Ω whose real space points lie on the
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boundary of the billiard table. However, the identification of the precollisional
and post collisional velocity at a regular point on the boundary implies that we
must make S1 a half circle.

Definition 3. The collision space M is given by a finite, countable union of Mi

where Mi = {(q, v) ∈ Ω : q ∈ Γi and < v, n >≥ 0}. Here n is the normal vector
of Γi at q and < v, n > denotes a scalar product between v and n.

For a non-corner point q ∈ Γ, the flow is defined for a small time interval
t ∈ (0, ε), ε > 0 only if it is a regular collision or a grazing collision at a dispersing
boundary. As this covers all the possibilities, the restriction is not too troublesome.
For a collision point x = (q, v) ∈ M with a defined flow at q, Φt will eventually
map x to some x1 ∈ M, namely the next collision point. Since we are looking at
bounded billiard tables, all trajectories in Ω̃ give an infinite number of collisions
(points in M).

Definition 4. We define a map F = M̃ −→ M̃ by F(x) = Φτ(x), x ∈ M̃, where
M̃ = M∩ Ω̃ is the set of all collision points from trajectories with clearly defined
dynamics (see previous sections). τ(x) is the distance from x to the next collision
point.

Without going into too much detail or rigor, we define a coordinate system
on M using the variables r and φ. ri is the arclength of each boundary Γi and
φ ∈ (−π

2 ,
π
2 ) is the angle between velocity v and the normal vector n at the point

of collision.

Let us take two points (r, φ) and (r1, φ1) in M such that F(r, φ) = (r1, φ1) and
let (x, y), (x1, y1) be the corresponding x-y coordinate points. We also define τ as
the distance from (x, y) to (x1, y1) and then refer to the flow map analysis for the
definition of ω, γ, and ψ. First we note:

x1 − x = τ cosω, y1 − y = τ sinω, ψ = π
2 − φ (1)

and, following a similar line of calculation as with the flow map,

dx = cos γdr, dx1 = cos γ1dr1
dy = sin γdr, dy1 = sin γ1dr1
dγ = −Kdr, dγ1 = −K1dr1

(2)

Taking ω and differentiating:

ω = γ + ψ = γ1 − ψ1 (3)

dω = −Kdr + dψ = −K1dr1 − dψ1 (4)
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Differentiating (1) and substituting from (2), we get:

dx1 − dx = d(τ cosω) = τd(cosω) + cosωdτ
= cosωdτ − τ sinωdτ

cos γ1dr1 − cos γdr = cosωdτ − τ sinωdτ
(5)

dy1 − dy = d(τ sinω) = τd(sinω) + sinωdτ
= sinωdτ + τ cosωdτ

sin γ1dr1 − sin γdr = sinωdτ + τ cosωdτ
(6)

Using (5), we solve for dτ and then plug it into (6) (Mathematica helps here...)
and get:

sinψ1dr1 + sinψdr = τdω (7)

Plugging (4) into (7):

sinψ1dr1 + sinψdr = τ(−Kdr + dψ)
sinψ1dr1 = (−τK − sinψ)dr + τdψ (8)

sinψ1dr1 + sinψdr = τ(−K1dr1 − dψ1)
sinψ1dr1 + τK1dr1 = − sinψdr − τdψ1

sinψ1dr1(1 +
τK1

sinψ1
) = − sinψdr − τdψ1

((−τK − sinψ)dr + τdψ)(sinψ1 + τK1)
= − sinψ1 sinψdr − τ sinψ1dψ1

(−τK sinψ1 − sinψ sinψ1 − τ2K1K − τK1 sinψ)dr + (τ sinψ1 + τ2K1)dψ
= − sinψ1 sinψdr − τ sinψ1dψ1

−τ(K sinψ1 + τKK1 +K1 sinψ)dr + τ(sinψ1 + τK1)dψ
= −τ sinψ1dψ1

sinψ1dψ1 = (K sinψ1 + τKK1 +K1 sinψ)dr + (sinψ1 + τK1)dψ (9)

Using dψ = −dφ, sinφ = cosψ, sinψ = cosφ we rewrite (8) and (9) in terms
of φ’s and r’s.

− cosφ1dr1 = (τK + cosφ)dr + τdφ
− cosφ1dφ1 = (K cosφ1 + τKK1 +K1 cosφ)dr + (cosφ1 + τK1)dφ

(10)

Finally, (10) allows us to build the Jacobian matrix for the map F : (r, φ) →
(r1, φ1) with the coefficient matrix.
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DxF = JF = − 1
cosφ1

(
τK + cosφ τ

K cosφ1 + τKK1 +K1 cosφ cosφ1 + τK1

)
(11)

And so the Jacobian is:
det(JF ) =

cosφ
cosφ1

Which is useful for the next theorem, the last result we present here. We do
not prove it, but note that F is a diffeomorphism of smoothness l − 1.

Theorem 4. The measure cosφdrdφ is preserved by the collision map F on M.

Proof. We apply the change of variables theorem on some set A ⊂M for a contin-
uous bounded function f(F(r, φ)) = cosφ and a diffeomorphism A 7→ F(A). This
gives us ∫ ∫

F(A)
f(r1, φ1)dr1dφ1 =

∫ ∫
A
JFf(F(r, φ))drdφ∫ ∫

F(A)
cosφ1dr1dφ1 =

∫ ∫
A

cosφ
cosφ1

cosφ1drdφ =
∫ ∫

A
cosφdrdφ

And so we end our foray into the world of billiards with that final result.
Though the benefits of proving that the collision map is invariant under the mea-
sure cosφdrdφ are not included here, it has many applications. The possibilities
for illuminating analysis of billiards are endless. As such, there is still a lot of
ongoing research in the field. In truth, we have barely scratched the surface.
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