LECTURE OUTLINE Continuos Distributions

Professor Leibon

Math 50

Jan. 19, 2004

Goals

Distribution Functions

Continuos Distributions

Terminology: A Reference Slide

Function
Probability
Distribution
Quantile
\vec{Y}-Marginal
($\vec{X} \mid \vec{Y}$)-Conditional

Abbrv. Book Alternate
pdf or pf $f(\vec{x}) \quad f_{\vec{X}}(\vec{x})$
df or cdf $F(\vec{x}) \quad F_{\vec{X}}(\vec{x})$
icdf or qf $F^{-1}(p) \quad Q_{X}(p)$
$f_{2}(\vec{y}) \quad f_{\vec{Y}}(\vec{y})$
$g(\vec{x} \mid \vec{y}) \quad f_{(\vec{X} \mid \vec{Y}=\vec{y})}(\vec{x})$

For the record: a pdf/pf with some discrete and some continuous coordinates will be called a pdf, and $\int f_{\vec{X}} d \vec{y}$ will mean integrate over the continuous \vec{y}-coordinates and sum over the discrete \vec{y}-coordinates.

Our Terminology

The Uniform Distribution, $U[0,1]$

$U[0,1]$ is a random variable which returns a real number between 0 and 1 such that if
$(a, b],(c, d] \in[0,1]$ and $b-a=d-c$, then
$\operatorname{Pr}(U[0,1] \in[a, b])=\operatorname{Pr}(U[0,1] \in[a, b])$.
Discuss what this means in "reality". Namely, construct $U[0,1]$ up to some accuracy by flipping a coin.

The Distribution Function

Given a real valued random variable X we let

$$
F_{X}(x)=\operatorname{Pr}(X \leq x)
$$

and call this function X 's distribution function, df.
Let

$$
Q_{X}(p)=\min _{p \leq F_{X}(x)}\{x\}:(0,1) \rightarrow \mathbf{R}
$$

and call this function X 's quantile function, qf or icdf.

$\operatorname{Bin}[5,0.5]$'s df

Describe how $F_{\operatorname{Bin}[5,0.5]}(x)$ and $Q_{\operatorname{Bin}[10,0.5]}(p)$ can be found in the following graph.

$G e o[0.5]$'s df

Describe how $F_{G e o[0.5]}(x)$ and $Q_{G e o[0.5]}(p)$ can be found in the following graph.

Summary: df for real valued X

Theorem: $F(x)$ satisfies

- If $x_{1} \leq x_{2}$, then $F\left(x_{1}\right) \leq F\left(x_{2}\right)$
- $\lim _{x \rightarrow-\infty} F(x)=0$
- $\lim _{x \rightarrow \infty} F(x)=1$
- $\lim _{\varepsilon^{+} \rightarrow 0} F(x+\varepsilon)=F(x)$
if and only if $F(x)=F_{X}(x)$ for some real valued random variable X. Furthermore, $X=Q_{X}(U[0,1])$.

Continuos Random Variable

A real valued random variable X is called continuos provided

$$
f(x)= \begin{cases}\frac{d F_{X}}{d x}(x) & \frac{d F_{X}}{d x} \text { exist at } x \\ 0 & \frac{d F_{X}}{d x} \text { does not exist at } x\end{cases}
$$

satisfies $\int_{\infty}^{\infty} f(x) d x=1$. In this case, we let $f(x)=f_{X}(x)$ and call f_{X} one of X 's probability density functions, pdf.

If X is continuos, then by the Fundamental Theorem of Cal-
culus $P(X \in[a, b])=P(X \in(a, b))=\int_{a}^{b} f_{X}(x) d x$.

Example

Let $X=(U[0,1])^{2}$.
Simulate X with a coin.
To what accuracy do you know you the result of your simulation?
Find F_{X}.
Is X continuous?
If X is continuous, then find a pdf.

Summary: pdf for real valued X

Theorem: $f(x)$ satisfies

- If $f(x) \geq 0$
- $\int f(x) d x=1$
then $F_{X}(x)=\int_{-\infty}^{x} f(x) d x$, is the distribution function of a real valued random variable X. We say $f(x)=f_{X}(x)$ and call $f_{X}(x)$ one of X 's probability density functions.

Comment: We say "one of X 's probability density functions" since we would not mind if we were to change $f_{X}(x)$ at say a finite list of points (or on any other measure zero set).

Example: The Standard Normal, $N[0,1]$.

Verify

$$
f_{N[0,1]}(x)=\frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}}
$$

is a pdf of a real valued random variable. We call this random variable the standard normal, and denote it as $N[0,1]$.

\mathbf{R}^{n} Valued Random Variables

Given real valued random variable $\left\{X_{i}\right\}_{i=1}^{N}$ we let

$$
F_{\vec{X}}(\vec{x})=\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{N} \leq x_{N}\right)
$$

and call this function the joint distribution function of the $\left\{X_{i}\right\}_{i=1}^{N}$.
Decide on the correct analog to the results on the summary page for the df of a real valued random variable.

\mathbf{R}^{n} valued Random Variables

If the integral of the following function
$f(\vec{x})=\left\{\begin{array}{l}\frac{\partial \cdots \partial F_{\vec{X}}}{\partial x_{1} \cdots \partial x_{N}} \\ 0\end{array}\right.$
if this derivative exist at \vec{x}
derivative does not exist at \vec{x}
over \mathbf{R}^{N} is 1 , then we say $f(\vec{x})=f_{\vec{X}}(\vec{x})$'s and call this function one of X 's joint probability density functions.
Decide on the correct analog to the results on the summary page for the pdf of a real valued random variable.

Example

Let $X=U[0,1]$ be view as a break of a stick.
After performing this break, break the first half of the stick again and call it $Y=U[0, X]$.
Simulate (X, Y) with a coin.
Find $f_{(X, Y)}$.
What is $\operatorname{Pr}\left(Y>\frac{1}{2}\right)$?

Marginals and Conditionals: Bivariate

Finding f_{X} from $f_{(X, Y)}$ is called computing the marginal of X,
i.e.

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{(X, Y)}(x, y) d y
$$

The conditional distribution of X given $Y=y$ is given by

$$
g_{(X \mid Y=y)}(x)=\frac{f_{(X, Y)}(x, y)}{f_{Y}(y)}
$$

(when $f_{Y}(y)>0$ and arbitrarily otherwise, similarly for $\left.g_{(Y \mid X=x)}(y)\right)$. Redo the previous example using these concepts.

Bay's Theorem

Notice,

$$
g_{(Y \mid X=x)}(y)=\frac{g_{(X \mid Y=y)}(x) f_{Y}(y)}{f_{X}(x)}
$$

Let's Do Some Statistics!...

Bay's Theorem

Let's Do Some Statistics!. Suppose that you have a coin which you are going to test if it is loaded. If its near $p=1 / 2$ say $[.45, .55]$ you will view as not relevantly loaded. Otherwise you will view it as relevantly loaded. If it is a VERY strange shaped coin, you MIGHT choose your prior to be $p=U[0,1]$. Run the success failure experiment once, and let X be the Bernoulli RV which is 1 when a success occurs. Suppose you see a success. What is p 's posterior distribution?

If you run the experiment a second time and see a success, what is what will be our new view of p 's distribution?

Bay's Theorem

I rolled $X:=[1,1,1,1,0,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1]$, and hence found $g(p \mid X)=101745 p^{16}(1-p)^{4}$.

The Law of Large Numbers, WLLN

Suppose $\left\{X_{i}\right\}$ are i.i.d. with $\mu=E\left(X_{i}\right)<\infty$ and $\sigma=S d\left(X_{i}\right)<\infty$. Letting

$$
A_{N}=\frac{\sum_{i=1}^{N} X_{i}}{N}
$$

we have that for every $\varepsilon>0$

$$
F_{C}(\mu+\varepsilon)-F_{C}(\mu-\varepsilon) \geq 1-\frac{\sigma^{2}}{\varepsilon^{2}} \frac{1}{N}
$$

$N=10$.

Let $X_{i}=\operatorname{Ber}_{i}[0.5]$, and view A_{N} verses $F_{N[0,1]}$ for $N=10$.

$$
N=40 .
$$

Let $X_{i}=\operatorname{Ber}_{i}[0.5]$, and view A_{N} verses $F_{N[0,1]}$ for $N=40$.

$N=100$.

Let $X_{i}=\operatorname{Ber}_{i}[0.5]$, and view A_{N} verses $F_{N[0,1]}$ for $N=100$.

Central Limit Theorem

Using the notation from the WLLN slide, if
$E\left(\left|X_{i}-E\left(X_{i}\right)\right|^{3}\right)=\rho<\infty$ and we let

$$
S_{N}^{*}=\frac{\left(\sum_{i=1}^{N} X_{i}\right)-N \mu}{\sigma \sqrt{N}}
$$

then for every x

$$
\left|F_{S_{N}^{*}}(x)-F_{N[0,1]}(x)\right| \leq \frac{\rho}{\sigma^{3}} \frac{1}{\sqrt{N}}
$$

$$
N=10
$$

Let $X_{i}=\operatorname{Ber}_{i}[0.5]$, and view S_{N}^{*} verses $F_{N[0,1]}$ for $N=10$.

$$
N=60
$$

Let $X_{i}=\operatorname{Ber}_{i}[0.5]$, and view S_{N}^{*} verses $F_{N[0,1]}$ for $N=60$.

$$
N=100
$$

Let $X_{i}=\operatorname{Ber}_{i}[0.5]$, and view S_{N}^{*} verses $F_{N[0,1]}$ for $N=100$.

$$
N=300
$$

Let $X_{i}=\operatorname{Ber}_{i}[0.5]$, and view S_{N}^{*} verses $F_{N[0,1]}$ for $N=300$.

