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Goals

Question: Why have we suffered?
Answer: To develop the Bayesian Framework.
Look at our two examples in this context.
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Our Terminology

First we give some notation associated to the below picture
in the presence of a joint density function f( ~X,~Θ)(~x,

~θ). Our
notation will look like this.
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Comparing Terminology

Here is a compare and contrast to help keep track of
terminology and notation.

Probability Statistics Book Alternate
~θ-Values Parameters ~θ ~θ

~Θ-Marginal Prior f2(~θ) f~Θ(~θ)

~x-Values Results ~x ~x

~X-Marginal Nomalizer f1(~x) f ~X(~x)

(~Θ| ~X)-Conditional Posterior g(~θ|~x) f(~Θ| ~X=~x)(
~θ)

( ~X|~Θ)-Conditional Likleyhood g(~x|~θ) f( ~X|~Θ=~θ)(~x)

Joint Density Joint f(~x, ~θ) f( ~X,~Θ)(~x,
~θ)
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A Picture of the Bayesian Terminology

The dotted/dashed lines indicate the set on which the
given function is a pdf of pf.
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Important Conventions

1. f~Z can be mixture of the discrete and the continuos,
though for our statistical purposes this mixture will always
be such that each one dimensional marginal fZi

is either

discrete or continuous. In particular,
∫

f( ~X,~Y )(~x, ~y)d~y

denotes an integral over the continuous ~Y coordinates and
a sum over the discrete ~Y coordinates.

2. Let χA(p) be the function which is 1 if p ∈ A and zero
otherwise. This is called an indicator function.
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The Bayesian View

Facts: We always know the likelihood function f( ~X|~Θ=~θ)(~x). If

we also believe we can determine the prior f~Θ(~θ) then we
are doing we doing Bayesian statistics. Bayes’ Theorem
dictates the posterior density (or probability function) is
given by

f(~Θ| ~X=~x)(
~θ) ∝ f( ~X|~Θ=~θ)(~x)f~Θ(~θ).

Note: We may normalize this function via

f(~Θ| ~X=~x)(
~θ) =

f( ~X|~Θ=~θ)(~x)f~Θ(~θ)
∫

f( ~X|~Θ=~θ)(~x)f~Θ(~θ)d~θ
=
f( ~X|~Θ=~θ)(~x)f~Θ(~θ)

f ~X(~x)
.
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Example 1: Discrete Example

~Θ = P discrete with fP (p0) = P0 and fP (p1) = (1 − P0).
~X = X discrete with domain {0, . . . ,m} and
f(X|P=p)(m) =

(

N
m

)

pm(1 − p)N−m.
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Example 1: Discrete Example

Hence
f(P |X=m)(p) ∝ fP (p)pm(1 − p)N−m

Summing, we find

f(P |X=m)(p) =
fP (p)pm(1 − p)N−m

(P0)pm
0 (1 − p0)N−m + (1 − P0)pm

1 (1 − p1)N−m

Application: Apply when P0 = 0.9, p0 = 0.2 and p1 = 0.7 and
explain the relation to our Madako Experiment. (In
particular, find where Pr(θ = θ1|X = 1) = 0.003 and
recompute this using the above f(P |X=m)(p) function.)
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Example 2: "Clinical Trial"

~Θ = P continuous with fP (p) = l!k!
(l+k+1)!

pk(1 − p)lχ[0,1](p).
~X = X discrete with domain {0, . . . ,m} and
f(X|P=p)(m) =

(

N
m

)

pm(1 − p)N−m.
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Example 2: "Clinical Trial"

Hence

f(P |X=m)(p) ∝ pm+k(1 − p)N−m+lχ[0,1](p)

Integrating, we find

f(P |X=m)(p) =
(m+ k)!(N −m+ l)!

(N + k + l + 1)!
pm+k(1 − p)N−m+lχ[0,1].

Application: Apply when l = k = 0 and explain the relation
to our dice rolling experiment.
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Example 2 (b): "Clinical Trial" second view

~Θ = P continuous with fP (p) = l!k!
(l+k+1)!

pk(1 − p)lχ[0,1](p).
~X = (X1, . . . , XN ) independent Bernoulli trials where
f( ~X|P=p)(m1, . . . ,mN ) = p(

PN
i=1 mi)(1 − p)(N−PN

i=1 mi).
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Example 2(b ): "Clinical Trial" second view

Hence

f(P | ~X=(m1,...,mN ))(p) ∝ p(k+
PN

i=1 mi)(1 − p)(l+N−
PN

i=1 mi)χ[0,1](p)

Explain the relationship between this answer and the
answer using the our first view of the Clinical Trial.
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Three Key Parameter RVs

One can re-scale the following to make the key the random
variables on the [a, b], (−∞, b], [a,∞), and (−∞,∞) for
modeling parameters.

fN [µ,σ](x) =
1

σ
√

2π
e

(x−µ)2

2σ2

fΓ[α,β](x) =
βα

Γ(α)
xα−1e−βxχ[0,∞)(x)

fβ[α,β](x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1 − x)β−1χ[0,1](x)
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Some Key Facts

ψN [µ,σ](t) = E
(

etN [µ,σ]
)

= e
σ2t2

2
+µt

N
∑

i=1

N [µi, σi] = N





N
∑

i=1

µi,

√

√

√

√

N
∑

i=1

σi





ψΓ[α,β](t) = E
(

etΓ[α,β]
)

=

(

β

β − t

)α

N
∑

i=1

Γ[αi, β] = Γ

[

N
∑

i=1

αi, β

]
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Three Templates

Let x̄ =
P

n

i=1
xi

n
, µ1 = σ2µ+nν2x̄

σ2+nν2
, ν1 = σ2ν2

σ2+nν2
.

Clinical Arrival Mean

prior P = β[α, β] Λ = Γ[α, β] M = N [µ, ν]

likelihood ~X = ~Ber[p]n ~X = ~Pois[λ]n ~X = ~N [m, σ]n

posterior β[α + nx̄, β + n − nx̄] Γ[α + nx̄, β + n] M = N [µ1, ν1]

E(Prior) α
α+β

α
β

µ

V (Prior) αβ
(α+β)2(α+β+1)

α
β2

ν2

Loss = (θ − a)2 α+nx̄
α+β+n

α+nx̄
β+n

µ1

Loss = |θ − a| num num µ1

MaxLikelihood x̄ x̄ x̄
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Estimating Parameters

Clinical Arrival Mean

Natural E(log(P )), E(log(1 − P )) E(log(Λ)), E(Λ) E(M), V (M)

E(Natural) Ψ(α) − Ψ(α + β), Ψ(β) − Ψ(α + β) Ψ(α) − log(β), α
β

µ, ν

NoInfoPrior 1
p(1−p)

χ[0,1](p) 1
γ

χ[0,∞)(γ) χ(−∞,∞)(m)
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Facts About our Estimators

1. If two different sampling plans produce proportional
(with respect to θ) likely functions, then the MLEs agree.
(See Exercises 6 and 9 page 334).

2. If θ̂ is the MLE of θ, then ˆg(θ) is the MLE of g(θ). (See the

Next Example)
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Explore This Example

Example Management at the local Burger Buddy has changed. We intend to examine the
service time in minutes required to service a customer under this new management.
Suppose that the time in minutes required to service a customer has can be described
by an exponential distribution fT (t) = θe−θt for which the value of the parameter θ is
unknown. (Is this reasonable?)
1. Suppose the average time required to serve a random sample of 30 customers is
observed to be 1.6 minutes. How could you estimate θ?
2 (a). Suppose that under the previous management an enormous amount of data was
collected and the average service time was found to be 1.6 minutes. How big should
your sample size N be so that if the new management really has an expected service
time ≤ 1.3 then you are at least 95 percent certain that you will not accidently report a
larger expected service time than the previous management’s known service time (using
your method form 1)? How big should N be so that if the new management really has a
service time ≥ 1.9 then we are at least 95 percent certain that we will not accidently
report a smaller average service time than the previous management’s service time?
3. Suppose you know the average nationwide service time at Burger Buddy is 1.3
minutes. This parameter is very management dependent and usually (about 90 percent
of the time) measured to fall within the range of [1, 2] minutes. How might you choose a
prior? Does this effect your parameter estimate in 1? What choices did you make? Try
out other choices. LECTURE OUTLINE The Big Picture – p.19/??



Solution to part 1

1. Suppose the average time required to serve a random sample of 30 customers is
observed to be 1.6 minutes. How could you estimate θ?

Solution: Let AN [θ] =
P

N

i=1
Ti

N
were the Ti are i.i.d. Exp[θ] random variable

representing the customer service times. By the WLLN, this average is an estimate of
the expect service time s = E(Ti), and

s = E(Ti) =

Z ∞

0
θe−θtdt =

1

θ
.

So if we could find a Maximum likelihood estimate ŝ for s, then by fact 2 on the previous
slide θ̂ = 1

ŝ
. The likelihood function using s as our parameter is

f
(~T |S=s)

(~t) = ΠN
i=1

„

1

s
e−

ti

s

«

=
1

sN
e−

1

s

P

N

i=1
ti .

Using one variable calculus, we find the maximum is is at ŝ =
P

N

i=1
ti

N
= 1.6. So

θ̂ = 1
ŝ

= 1
1.6

= 0.625.
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Solution to 2(a), Approximate via CLT

2 (a). Suppose that under the previous management an enormous amount of data was
collected and the average service time was found to be 1.6 minutes. How big should
your sample size N be so that if the new management really has an expected service
time ≤ 1.3 then you are at least 95 percent certain that you will not accidently report a
larger expected service time than the previous management’s known service time (using
your method form 1)?
Solution: Recalling that θ = 1/E(Ti) we are can interpret this request as finding the
smallest such N so that

max
{θ≥1/1.3}

Pr(AN [θ] ≥ 1.6) ≤ 0.05

The CLT gives us a method to approximate this probability. Since E(Ti) = 1/θ and
Sd(Ti) = 1/θ, for each θ ≥ 1/1.3 we are looking for the smallest N such that
1 − FN [0,1](

√
N(θ1.6 − 1)) ≤ 0.05 and then taking the largest of these Ns. Notice

1 − FN [0,1](
√

N(θ1.6 − 1))) decreases as θ increases, so we may assume θ = 1/1.3

and let N = ceil
“

1
1.6/(1.3)−1

F−1
N [0,1]

(.95))2
”

= 51.

LECTURE OUTLINE The Big Picture – p.21/??



Solution to 2(a), Exact

2 (a). Suppose that under the previous management an enormous amount of data was
collected and the average service time was found to be 1.6 minutes. How big should
your sample size N be so that if the new management really has an expected service
time ≤ 1.3 then you are at least 95 percent certain that you will not accidently report a
larger expected service time than the previous management’s known service time (using
your method form 1)?
Solution: Recall form our key facts AN = 1

N
Γ[N, θ]. We need the smallest N that

guarantees that

max
{θ≥1/1.3}

Pr(Γ[N, θ] ≥ 1.6N) ≤ 0.05

Once again, we’d like to know that this probability decreases as θ increases. To see this
we notice

d

dθ
Pr(Γ[N, θ] ≥ 1.6N) = E((N/θ − x)χ[1.6N,∞]) < E((1.3N − N1.6)χ[1.6N,∞]) < 0

Now we use maple to find the smallest N such that Pr(Γ[N, 1
1.3

] ≥ 1.6N) ≤ 0.05 to be
56.
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A Right Tail.

56 > 51 suggest that that AN [θ] has right tail. The red curve is actual curve and the blue
the curve from the CLT giving us the smallest N such that Pr(AN [1/1.3] ≥ 1.6) = 0.05.
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Solution 2(b)

2 (b). How big should N be so that if the new management really has a service time
≥ 1.9 then we are at least 95 percent certain that we will not accidently report a smaller
average service time than the previous management’s service time?
Answer: HW: 109 using the CLT and 101 using the exact method.
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Solution 3

3. Suppose you know the average nationwide service time at Burger Buddy is 1.3
minutes. This parameter is very management dependent and usually (about 90 percent
of the time) measured to fall within the range of [1, 2] minutes. How might you choose a
prior? Does this effect your parameter estimate in 1? What choices did you make? Try
out other choices.
Solution: We use the parameter θ and as in part 1 its MLE is θ̂ = 1/(1.3) and we may
assume Pr(θ̂ ∈ [1/2, 1]) = .9. Using this information, a natural choice of prior would be
Γ[α, β](θ) chosen so that E(Γ[α, β]) = 1

1.3
and Pr(Γ[α, β] ∈ [1/2, 1]) = .9. Using

maple we find α = 25.3 and β = 32.9. The likelihood function is

f
(~T |B=b)

(~t) = ΠN
i=1

“

θe−θti

”

= θN e−θ
P

N

i=1
ti ,

so the posterior is Γ[α + N, β +
PN

i=1 ti]. In particular, using the loss function
L(θ, a) = (θ − a)2 we would estimate θ to be θ∗ = 25.3+30

32.9+30(1.6)
= 0.68. Hence the

expect service time using our Bayesian estimate is 1.46 minutes.
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The Prior and Posterior

The red is the prior and the blue the posterior given that we saw an average of 1.6 in 30
trials.
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