Worksheet #1: Dimensional Analysis

Say we suspect that drag force F depends only on a sphere's radius a, its speed v, and the surrounding fluid density ρ .

a) What are the dimensions of a, v, ρ and F? Solution:

$$[a] = L$$

$$[v] = LT^{-1}$$

$$[\rho] = ML^{-3}$$

$$[F] = MLT^{-2} \qquad F = \text{mass} \times \text{acceleration}$$

b) Create the dimensions matrix for this problem. Solution:

c) Find a dimensionless combination of the quantities, π . Solution: There are many.

- $\pi = \frac{F}{v^2 \rho a^2} \text{ or } \pi = \frac{v^2 \rho a^2}{F} \text{ or } \pi = \left(\frac{F}{v^2 \rho a^2}\right)^k \text{ for any } k.$ d) Find $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ so that $\pi = a^{\alpha_1} v^{\alpha_2} \rho^{\alpha_3} F^{\alpha_4}$. Is this choice unique? Find the subspace of all such vectors and find a basis. **Solution:** $\alpha_1 = [-2, -2, -1, 1]$ is not a unique choice of α . Any other choice of α will satisfy $\alpha = k\alpha_1$.
- e) What is the number of independent dimensionless parameters? **Solution:** There is only one independent dimensionless parameter since the rank of the 3×4 A is 3 and dim(Null(A)) = 4-rank(A) = 1.
- f) What does the Pi Theorem tell us for this problem? How must F depend on a, v, ρ ? **Solution:** The Pi Theorem tells us that the π is constant. In other words, $\pi = \frac{F}{v^2 \rho a^2} = c$ for some constant c. So $F = cv^2\rho a^2$.
- g) If F also depended on visocity η (units $ML^{-1}T^{-1}$) Repeat part e). Solution: Repeat the process. You will find there two dimensionless quantities. π_1 defined as π from before and $\pi_2 = \frac{\eta}{\rho v a}$ is the physical quantity known as the Reynold's number. The function F in terms of the other quantities is $F = cv^2 \rho a^2 g(\pi_2)$ where g is some function.