Worksheet #15: Image deblurring (1D)

Consider the symmetric blurring operator K f(z) = J7_k(z — y)f(y)dy, where k(s) is even,
symmetric, and 27-periodic. k(s) is called an aperture function.
(1) Show that ¢,(x) =1 is an eigenfunction of K, and find its eigenvalue? [Hint: why is

K ¢, (z) independent of 2?7 Why is Ag independent of a\:“z]
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(2) Show that ¢,(x) = cos(nz), n=1,2,...is an eigenfunction of ¢, find its eigenvalue of

An. [Hint: use addition formula, k evern| X
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(3) How do A, relate to Fourier cos coefficients I, of aperture function k(s)?
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You could check that sin(na) is also cigenfunction with same eigenvalue A,. As-
sume image is f(z) = QL+ > 02 [an cos(nz) + by, sin(nz)] and(I(@:v) = glg) = 1—4251 +
3%, [An cos(nz) + By sin(nz)]

(4) How are g’s Fourier coefficients related to those of 1 1 ;
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Such is the nature of convolution kernels. How would you invert g — f ie. deconvolve?
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