Worksheet #15: Image deblurring (1D)

Consider the symmetric blurring operator $Kf(x) = \int_{-\pi}^{\pi} k(x-y)f(y)dy$, where k(s) is even, symmetric, and 2π -periodic. k(s) is called an aperture function.

(1) Show that $\phi_n(x) = 1$ is an eigenfunction of K, and find its eigenvalue? [Hint: why is

Show that
$$\varphi_n(x) = 1$$
 is an eigenfunction of x , and find its digentation $K \varphi_n(x)$ independent of x ? Why is λ_0 independent of x ?

$$(k \mid)(x) = \int_{-\pi}^{\pi} k(x - y) \, dy = \int_{-\pi - x}^{\pi} k(x - y) \, ds = \int_{-\pi}^{\pi} k(x - y) \, d$$

(2) Show that $\phi_n(x) = \cos(nx)$, n = 1, 2, ... is an eigenfunction of K, find its eigenvalue of

(Legh) (x) =
$$\int_{-\pi}^{\pi} h(x-y) \cos(nx) dy = \int_{\pi}^{\pi} \frac{1}{h(x-y)} \cos(ny) dy = \int_{\pi}^{\pi} \frac{1}{h(x-y)} \cos(ny) dy = \int_{\pi}^{\pi} \frac{1}{h(x-y)} \cos(ny) dy = \int_{\pi}^{\pi} \frac{1}{h(x-y)} \cos(nx) dy = \int_{\pi}^{\pi} \frac{1}{h(x-y)} \cos(nx) dx = \int_{\pi}^{\pi} h(x-y) d$$

(3) How do λ_n relate to Fourier cos coefficients K_n of aperture function k(s)?

$$\lambda_n = \int_{-\pi}^{\pi} k(s) (\cos s(ns)) ds = \pi k_n$$
four iec co eifficients of lebs)

You could check that $\sin(nx)$ is also eigenfunction with same eigenvalue λ_n . Assume image is $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]$ and $K(x) = g(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]$ $\sum_{n=1}^{\infty} \left[A_n \cos(nx) + B_n \sin(nx) \right]$

Note the Fourier basis is the eigenbasis for K. so the action of Kis multiplication broits Pourier Weffiners.

Such is the nature of convolution kernels. How would you invert $g \to f$ ie. deconvolve?

This is called de convolving