Worksheet \#15: Image deblurring (1D)

Consider the symmetric blurring operator $K f(x)=\int_{-\pi}^{\pi} k(x-y) f(y) d y$, where $k(s)$ is even, symmetric, and 2π-periodic. $k(s)$ is called an aperture function.
(1) Show that $\phi_{n}(x)=1$ is an eigenfunction of K, and find its eigenvalue? [Hint: why is $K \phi_{n}(x)$ independent of x ? Why is λ_{0} independent of x ?]
(2) Show that $\phi_{n}(x)=\cos (n x), n=1,2, \ldots$ is an eigenfunction of K, find its eigenvalue of λ_{n}. [Hint: use addition formula, k even]
(3) How do λ_{n} relate to Fourier cos coefficients K_{n} of aperture function $k(s)$?

You could check that $\sin (n x)$ is also eigenfunction with same eigenvalue λ_{n}. Assume image is $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right]$ and $K(x)=g(x)=\frac{A_{0}}{2}+$ $\sum_{n=1}^{\infty}\left[A_{n} \cos (n x)+B_{n} \sin (n x)\right]$
(4) How are g 's Fourier coefficients related to those of f ?

Such is the nature of convolution kernels. How would you invert $g \rightarrow f$ ie. deconvolve?

