Worksheet \#11: L^{2} convergence

(1) Is the sequence of functions $f_{n}(x)=\left\{\begin{array}{ll}1 & x<\frac{1}{n} \\ 0 & \text { otherwise }\end{array}\right.$ convergent on (0,1)? If so, in what sense? (pointwise, uniformly, or L^{2})
(2) Is the sequence of functions $f_{n}(x)=\left\{\begin{array}{ll}\sqrt{n} & x<\frac{1}{n} \\ 0 & \text { otherwise }\end{array}\right.$ convergent on $(0,1)$? If so, in what sense? (pointwise, uniformly, or L^{2})
(3) Now consider the unbounded interval $(-\infty, \infty)$. Is the sequence of functions $f_{n}(x)=$ $\left\{\begin{array}{ll}\frac{1}{n} & |x|<n \\ 0 & \text { otherwise }\end{array}\right.$ convergent? If so, in what sense? (pointwise, uniformly, or L^{2})
(4) Modify problem (3) so that the function converges pointwise and uniformly but not in L^{2}.

