Math 46: Homework 9

Due May 29

(1) Page 372 \# 5. This should be easy if you look up the radial part of the 3D Laplacian operator.
(2) Page $372 \# 6$. Adapt the method from 1D. In fact $-\Delta$ is a positive operator. Note the λ values would be eigenvalues of the Laplacian.
(3) Page $396 \# 4$. As a function of ξ this is called a Cauchy distribution. It comes up in statistics and has an infinite variance.
(4) Page $396 \# 5$ b, c. This should be quick. These show that translation becomes multiplication in Fourier space.
(5) Page 396 \# 7. Once (or even before!) you have solved, answer this: how is the solution $u(x, t)$ at time t related to the solution for the case $c=0$ at the same time t ? [Hint: the previous question is useful here]
(6) Use the sifting property

$$
\int_{-\infty}^{\infty} \delta(x-a) f(x) d x=f(a)
$$

to find the Fourier transform of the delta distribution $\delta(x-a)$. Now write the inversion formulathis gives you a new and useful representation of the delta distribution. By interchanging the labels x and ξ, deduce the Fourier transform of the plane wave function $e^{i k x}$. Add your answer to Table 6.2.
(7) Page $396 \# 10$. [Hint: write out $|\hat{u}(\xi)|=\hat{u}(\xi) \overline{\hat{u}(\xi)}$ using a double integral, use the above, then simplify]. This is the continuous analogue of Parsevals equality on p. 213. The Fourier transform is a (continuous rather than countably infinite) orthogonal expansion.
(8) Page 397 \# 11.
(9) Page 398 \# 15. I suggest that you not use the hint until you have a convolution expression for $u(x, y)$ as in Example 6.35 , of which you may piggyback off the final result. You may use the boundary condition $\lim _{y \rightarrow \infty} u(x, y)$ is bounded. The problem corresponds to injecting current density into the edge of a resisitive medium and solving for the voltage fielda useful medical imaging technique (Electrical Impedance Tomography).
(10) [Bonus 2 points] Page $382 \# 3 \mathrm{~b}$. Use the result from a, which states that the L given is self-adjoint when certain BCs are imposed. [Hint: see proof we did for Fredholm operators (or, even, symmetric matrices), and it should not be hard].

