Math 46: X hour of $5 / 10 / 07$

Alex Barnett

May 10, 2007

We used Section 4.3.3, particularly Thms 4.12 and 4.13 , to determine if the following had a solution, and then solve them. We made use of (4.31) a lot to get $u(x)$ once the \mathbf{c} vector was found.

Let K operator have kernel $k(x, y)=\sin x \sin y$.
Then A is 1 -by- 1 matrix with entry $\pi / 2$. Spectrum of K is then $\pi / 2$ (multiplicity 1 , eigenfunction $\sin x$), and 0 (infinite multiplicity, eigenspace all functions orthog to $\left\{\beta_{j}\right\}$ that is $\sin x$)

Solve the following:

1. $K u-u=\sin 2 x$
2. $K u-u=x$
(We used Maple to get the Fourier coefficient)
3. $K u-3 \sin 2 x$
4. $K u=3 \sin x$.

Answer key:

1. $c_{1}=0$ so $u=-\sin 2 x$
2. $c_{1}=\frac{\pi}{1-\pi / 2}$ so $u=\frac{\pi}{1-\pi / 2} \sin x-x$
3. no solution
4. $u=\frac{6}{\pi} \sin x+$ (any function orthogonal to $\sin x$). Infinitely-nonunique solution.
