Math 46: X hour of 5/10/07

Alex Barnett

May 10, 2007

We used Section 4.3.3, particularly Thms 4.12 and 4.13, to determine if the following had a solution, and then solve them. We made use of (4.31) a lot to get u(x) once the **c** vector was found.

Let K operator have kernel $k(x, y) = \sin x \sin y$.

Then A is 1-by-1 matrix with entry $\pi/2$. Spectrum of K is then $\pi/2$ (multiplicity 1, eigenfunction $\sin x$), and 0 (infinite multiplicity, eigenspace all functions orthog to $\{\beta_i\}$ that is $\sin x$)

Solve the following:

- 1. $Ku u = \sin 2x$
- 2. Ku u = x

(We used Maple to get the Fourier coefficient)

- 3. $Ku 3\sin 2x$
- 4. $Ku = 3\sin x$.

Answer key:

1. $c_1 = 0$ so $u = -\sin 2x$

2.
$$c_1 = \frac{\pi}{1-\pi/2}$$
 so $u = \frac{\pi}{1-\pi/2} \sin x - x$

- 3. no solution
- 4. $u = \frac{6}{\pi} \sin x + (any function orthogonal to sin x)$. Infinitely-nonunique solution.