Math 46: Applied Math: Homework 9

due Wed May 28-last one!

A) The wave equation in \mathbb{R}^{n} is $u_{t t}-c^{2} \Delta u=0$, where c is the wave speed.

1. Show that if u is time-harmonic, that is $u(\mathbf{x}, t)=U(\mathbf{x}) \cos \omega t$ for some frequency ω, then U satisfies the Helmholtz equation $(\Delta+E) u=0$. What is the constant E ?
2. Show that the plane wave $U(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}$, where \mathbf{k} is a constant (wave)vector, is a solution to the Helmholtz equation. [Hint: first hit U with grad, componentwise]. What is the relation between ω and \mathbf{k} ? (this is the dispersion relation for the wave equation).
p.395-398: \#4. As a function of ξ this is called a Cauchy distribution. It comes up in statistics and has an infinite variance.
B) Compute the Fourier transform of $g(x)=\sin |x|$. Use this to find a particular solution to the driven mass-spring ODE $u^{\prime \prime}+u=f$ in terms of an arbitrary driving function $f(x)$. BONUS: show this differs from the Variation of Parameters solution only by a homogeneous solution, as it must. Discuss 'causality', i.e. mysterious influences from the future.
\#5. b, c. These show that translation becomes multiplication in Fourier space.
$\# 7$. Once (or even before!) you've solved, answer this: how is the solution $u(x, t)$ at time t related to the solution for the case $c=0$ at the same time t ? [Hint: the previous question is useful here]
C) Use the sifting property

$$
\int_{-\infty}^{\infty} \delta(x-a) f(x) d x=f(a)
$$

to find the Fourier transform of the delta distribution $\delta(x-a)$. Now write the inversion formula-this gives you a new and useful representation of the delta distribution. By interchanging the labels x and ξ, deduce the Fourier transform of the plane wave function $e^{i k x}$. Add your answer to Table 6.2.
\#10. [Hint: write out $|\hat{u}(\xi)|^{2}=\hat{u}(\xi) \overline{\hat{u}(\xi)}$ using a double integral, use the above, then simplify]. This is the continuous analogue of Parseval's equality on p. 213. The Fourier transform is a (continuous rather than countably infinite) orthogonal expansion.
\#11.
\#15. I suggest you don't use the hint until you have a convolution expression for $u(x, y)$ as in Example 6.35, of which you may piggyback off the final result. The problem corresponds to injecting current density into the edge of a resisitive medium and solving for the voltage field - a useful medical imaging technique (Electrical Impedance Tomography).

