Math 46: Applied Math: Homework 5

due Wed Apr 30 ... but best if do relevant questions after each lecture

Slightly shorter as last week, for Midterm 1 recovery; some of Fourier stuff is recap of Math 23.
If you want to check integrals you can use Maple (for which Dartmouth has a campus license). For instance, to compute $\int_{-L}^{L} x \sin (n \pi x / L) d x$.
assume (n,integer);
$\mathrm{f}:=\mathrm{x} * \sin (\mathrm{n} * \mathrm{x} * \mathrm{Pi} / \mathrm{L})$;
A := int (f,x=-L..L);
Gives answer $2(-1)^{n+1} L^{2} / n \pi$. How great is that?
p.148-150: \#12. Enjoy this beautiful exploration. $r_{n}(\lambda)$ is the residual (error in the approximation). Try to be rigorous when it says 'show that. . .', esp. for part c (but don't bother with the full proof by induction for a). For e) please produce a plot of the size of the relative error from the 'exact' answer as a function of n the number of expansion terms summed, in the domain 0 to 20 . Make your vertical axis a log scale. Fascinating, eh? What n is optimal for the approximation? [Hints: for plotting values vs n in matlab, you should first make a list such as $n=1: 20$; then compute everything in terms of this list, e.g. power $(10, \mathrm{n})$ would be the list $10,10^{2}, 10^{3}, \ldots, 10^{20}$. Note relative error means error as a fraction of the answer. The exact answer is given by the expint command]
p.214-215: \#1 (careful: the $n=0$ term will need to be treated specially). Isn't it wild that the function $1-x$ has non-zero derivative at the boundary, but the cos's (which have zero derivative there) can approximate it in the mean-square sense?
\#3 (explain carefully the missing details of the proof). This result is important later on, and for every mathematician to know.
\#5 You will find even and odd separate, so the Gram-Schmidt will be quick. Then only find c_{0} and c_{1}, and write the pointwise error (and do the plot) only for this 2-term approximation. Don't bother computing the max pointwise error or mean-square error.

A: a) Write down orthonormal Fourier sine and cosine basis functions on $(-\pi, \pi)$. b) Use the projection formula to compute coefficients $c_{n}=\left(f_{n}, f\right)$ which give the function $f(x)=x$ on $(-\pi, \pi)$. [Hint: use symmetry to first discard half the coefficients. Also mess around with http://falstad.com/fourier for fun.] c) To what value does this Fourier representation converge to at $x=\pi$? d) Apply Parseval's equality to compute $\sum_{n=1}^{\infty} n^{-2}$. Euler first found this value in 1735. ${ }^{1}$
p.219: $\# 2$. 'Graph the frequency spectrum' means sketch a stick plot of the first few coefficients c_{0}, c_{1}, etc. [see previous hint, and maybe check with http://integrals.wolfram.com or Maple.]
p.224-226: $\# 3$. If you don't choose to use complex exponentials then you'll need to think explicitly about degeneracy of eigenvalues.
\#4. Unfortunately the energy argument won't work so you'll need to try to match BCs for $\lambda<0$ to show (try to prove) it can or cannot happen. The graphical part is needed since the equation you'll get is transcendental.

[^0]
[^0]: ${ }^{1}$ See http://mathworld.wolfram.com/RiemannZetaFunctionZeta2.html

