# Math 46: Applied Math: Homework 7-modified 

due Wed May 16 ... but best if do relevant questions after each lecture

In the first question you'll need the Fourier sine series on $[0, \pi]$,

$$
x(\pi-x)=\frac{8}{\pi}\left[\sin x+\frac{\sin 3 x}{3^{3}}+\frac{\sin 5 x}{5^{3}}+\cdots\right]
$$

How did I quickly work out the coefficients? Via these Maple commands-try it!

```
assume(n,integer);
assume(n,odd); # by symmetry you know only odd sines contribute
int(sin(n*x)*x*(Pi-x), x=0..Pi) / int(sin(n*x)**2, x=0..Pi); # coeffs (f,f_n)/||f_n||`2
```

p.243-247: \#7. [ask if you didn't get the eigenvalues and eigenfunctions from \#4 c. Please test if $\mu$ is an eigenvalue before proceeding]. This is a nice question; each part gives a different scenario in terms of solvability. Congratulations, you've now solved your first symmetric Fredholm integral equation, an infinite-dimensional problem!
A) Demonstrate that $v(x)$ defined on p. 250 indeed solves $L v=f$, thus the theorem giving the formula for Green's function is correct.
p.257-258: \#1. [view the LHS as a differential operator]
\#2. You should get an explicit expression for $u(x)$ in terms of $f$. [Hint: use an expansion in eigenfunctions of $L$ ]
\#3. [Hint: you can solve as is although your solution may involve an integral. Then to get the $p(\xi)$ function you'll need to transform to S-L form using an integrating factor]
\#5. Appreciate the power of what you've just done: a closed-form expression for the solution to arbitrary heat source function in arbitrary conductivity!
\#7.
\#8. [Hint: use p.224-226 \#7 and it's very easy]
p.345-346: \#1. Note this is 1D equivalent of the heat spreading function you studied in 3D in the dimensional analysis worksheet.
\#6.

