Math 46: Applied Math: Homework 5

due Wed May 2 ... but best if do relevant questions after each lecture

Slightly shorter like last week since you had to recover from midterm 1.
p.148-150: \#12. Enjoy this beautiful exploration. $r_{n}(\lambda)$ is the residual (error in the approximation). Try to be a rigorous as possible when it says 'show that...' For e) please produce a plot of the size of the relative error from the 'exact' answer as a function of n the number of expansion terms summed, in the domain 0 to 20. Make your vertical axis a log scale. Fascinating, eh? What n is optimal for the approximation? [Hints: for plotting values vs n in matlab, you should first make a list such as $\mathrm{n}=1: 20$; then compute everything in terms of this list, e.g. power $(10, \mathrm{n})$ would be the list $10,10^{2}, 10^{3}, \ldots, 10^{20}$. Make sure you understand the concept of relative error; ask if not. The exact answer is given by expint]

A: Find out if the oscillatory WKB approximation (Eq. above (2.98)) satisfies the differential equation (2.97) uniformly, by computing and interpreting the residual $r(x, \varepsilon)$. Can you conclude from this that WKB gives a uniform approximation to the exact solution?
BONUS: can you improve upon this order of residual by using an approximation of the form $y(x)=$ $k(x)^{-1 / 2} e^{ \pm \frac{i}{\varepsilon} \int k(x) d x}[1+\varepsilon w(x)+\cdots]$? Give $w(x)$ and state what uniform order of residual you now have.
p.214-215: $\# 1$ (careful the $n=0$ term will need to be treated specially). Isn't it wild that the function $1-x$ has non-zero derivative at the boundary, but the cos's (which have zero derivative there) can approximate it in the mean-square sense?
\#3 (explain carefully the missing details of the proof). This result is important later on, and for every mathematician to know.
\#5 You will find even and odd separate, so the Gram-Schmidt will be quick. Then only find c_{0} and c_{1}, and write the pointwise error (and do the plot) only for this 2-term approximation. Don't bother computing the max pointwise error or mean-square error.
p.219: \#2. 'Graph the frequency spectrum' means sketch a stick plot of the first few coefficients c_{0}, c_{1}, etc. [Hint: what is the symmetry? Feel free to use http://integrals.wolfram.com or Maple for the $n \geq 1$ case. Also mess around with http://falstad.com/fourier for fun.]
p.224-226: $\# 3$. If you don't choose to use complex exponentials then you'll need to think explicitly about degeneracy of eigenvalues.
\#4. Unfortunately the energy argument won't work so you'll need to try to match BCs for $\lambda<0$ to show (try to prove) it can or cannot happen. The graphical part is needed since the equation you'll get is transcendental.

