Math 46: Applied Math: Homework 2

due Wed Apr 11 ... but best if do relevant questions after each lecture

Always check how many terms the question asks for, e.g. $y_{0}+\varepsilon y_{1}$ is 2 -term.
p.40-44: \#5. A warm-up question (no pun intended). In b please group together the exponentials in the term involving an integral; this convolution result is called Duhamel's principle.
p.52-54: \#6. You will see in c why this is called a 'pitchfork bifurcation'.
p.62: \#1.
p.67-68: \#2. Try to visualize how the two eigenvalues move in the complex plane as b varies. Note you don't need a full solution for each case of b, just discussion of behaviour (type of critical point), including the equal-roots case.
\#6. Nice connection to 1 -variable ODEs here.
p.79-82: \#1 a.
\#12. a, c. For c use pplane applet, and enjoy launching many trajectories. Attach a print-out to your homework.
p.100-104: \#1. This is a quick and easy review of Lecture 2.
\#2. This is a lovely example. Please leave enough time to get it right and produce the plots-you will love it when it works. First ask yourself, is the unperturbed ODE oscillatory or decaying/growing? You will find the ICs given cause the unperturbed solution to be special (how?), and the perturbation messes this up in a dramatic way. Please don't bother finding, or plotting, the Taylor series. Instead produce the following two plots at $\varepsilon=0.04$:

- compare $u(t), u_{0}(t), \varepsilon u_{1}(t)$, and $u_{a}(t)$ on the same axes in the domain $t \in[0,5]$
- show error $E(\varepsilon, t):=u_{a}(t)-u(t)$ in the domain $t \in[0,3]$, making sure your axes illustrate its size

You should find the error is very small, staying much smaller than 10^{-3} in most of the latter domain. If you don't find this, you'll need to debug your algebra! [e.g. make sure $u_{1}(t)$ satisfies the correct ICs] \#4 (easy algebra review; remember to substitute for $y!$)
\#11. (connects to the planet-projectile ODE scaling problem from Lecture 3). Getting the 3rd term involves some high powers of t; do not be alarmed. However, only compute t_{m} and $h_{\max }$ to order ε since order ε^{2} is an algebra nightmare.

