Derivatives of inverse functions

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

Ex 1: If $x^2 + y^2 = 1$, then take $\frac{d}{dx}$ of both sides to find

$$2x + 2y * \frac{dy}{dx} = 0$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

Ex 1: If $x^2 + y^2 = 1$, then take $\frac{d}{dx}$ of both sides to find

$$2x + 2y * \frac{dy}{dx} = 0$$

SO

$$\boxed{\frac{dy}{dx} = -\frac{x}{y}}$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

Ex 1: If $x^2 + y^2 = 1$, then take $\frac{d}{dx}$ of both sides to find $\frac{d}{dx}$ of both sides to find

Ex 2: If $e^y = x$, then take

$$\frac{dy}{dx} * e^y = x\frac{dy}{dx} + y.$$

$$2x + 2y * \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{x}{y}$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

Ex 1: If $x^2 + y^2 = 1$, then take $\frac{d}{dx}$ of both sides to find **Ex 2:** If $e^y = x$, then take $\frac{d}{dx}$ of both sides to find

Ex 2: If $e^y = x$, then take

$$\frac{dy}{dx} * e^y = x\frac{dy}{dx} + y.$$

$$2x + 2y * \frac{dy}{dx} = 0$$

$$y = \frac{dy}{dx} * e^{y} - x\frac{dy}{dx} = \frac{dy}{dx}(e^{y} - x)$$

•	^		-	•	
J		ų	5	2	

$$\boxed{\frac{dy}{dx} = -\frac{x}{y}}$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

Ex 1: If $x^2 + y^2 = 1$, then take $\frac{d}{dx}$ of both sides to find **Ex 2:** If $e^y = x$, then take $\frac{d}{dx}$ of both sides to find

$$2x + 2y * \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} * e^y = x\frac{dy}{dx} + y.$$

$$y = \frac{dy}{dx} * e^{y} - x\frac{dy}{dx} = \frac{dy}{dx}(e^{y} - x)$$

c	\sim
3	o

dy	$=-\overset{x}{-}$
dx	У

So
$$\frac{dy}{dx} = \frac{y}{e^y - x}$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

Ex 1: If $x^2 + y^2 = 1$, **Ex 1:** If $x^2 + y^2 = 1$, then take $\frac{d}{dx}$ of both sides to find **Ex 2:** If $e^y = x$, then take $\frac{d}{dx}$ of both sides to find

Ex 2: If $e^y = x$, then take

$$\frac{dy}{dx} * e^y = x\frac{dy}{dx} + y$$

$$2x + 2y * \frac{dy}{dx} = 0$$

$$y = \frac{dy}{dx} * e^y - x \frac{dy}{dx} = \frac{dy}{dx}(e^y - x)$$

SO

$$\frac{dy}{dx} = -\frac{x}{y}$$
 So $\frac{dy}{dx} = \frac{y}{e^y - x}$

So

Every time:

(1) Take $\frac{d}{dx}$ of both sides.

(2) Add and subtract to get the $\frac{dy}{dx}$ on one side and everything else on the other.

(3) Factor out $\frac{dy}{dx}$ and divide both sides by its coefficient.

We can also take derivatives versus other variables: **Example** Suppose cos(y) = x + y. 1. Calculate $\frac{dy}{dx}$

2. Calculate $\frac{dx}{dy}$

We can also take derivatives versus other variables: Example Suppose cos(y) = x + y.

1. Calculate $\frac{dy}{dx}$ Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$.

2. Calculate $\frac{dx}{dy}$

We can also take derivatives versus other variables: Example Suppose cos(y) = x + y.

1. Calculate
$$\frac{dy}{dx}$$

Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$. So
 $\frac{dy}{dx}(-\sin(y) - 1) = 1$, and so $\frac{dy}{dx} = \frac{1}{-\sin(y) - 1}$

2. Calculate $\frac{dx}{dy}$

We can also take derivatives versus other variables: Example Suppose cos(y) = x + y.

1. Calculate
$$\frac{dy}{dx}$$

Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$. So
 $\frac{dy}{dx}(-\sin(y) - 1) = 1$, and so $\frac{dy}{dx} = \frac{1}{-\sin(y) - 1}$

2. Calculate $\frac{dx}{dy}$ Now take $\frac{d}{dy}$:

We can also take derivatives versus other variables: Example Suppose cos(y) = x + y.

1. Calculate
$$\frac{dy}{dx}$$

Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$. So
 $\frac{dy}{dx}(-\sin(y) - 1) = 1$, and so $\frac{dy}{dx} = \frac{1}{-\sin(y) - 1}$

2. Calculate $\frac{dx}{dy}$ Now take $\frac{d}{dy}$: $-\sin(y) = \frac{dx}{dy} + 1$.

We can also take derivatives versus other variables: Example Suppose cos(y) = x + y.

1. Calculate
$$\frac{dy}{dx}$$

Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$. So
 $\frac{dy}{dx}(-\sin(y) - 1) = 1$, and so $\frac{dy}{dx} = \frac{1}{-\sin(y) - 1}$

2. Calculate
$$\frac{dx}{dy}$$

Now take $\frac{d}{dy}$: $-\sin(y) = \frac{dx}{dy} + 1$. So

$$\frac{dx}{dy} = -\sin(x) - 1$$

We can also take derivatives versus other variables: Example Suppose cos(y) = x + y.

1. Calculate
$$\frac{dy}{dx}$$

Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$. So
 $\frac{dy}{dx}(-\sin(y) - 1) = 1$, and so $\frac{dy}{dx} = \frac{1}{-\sin(y) - 1}$

2. Calculate
$$\frac{dx}{dy}$$

Now take $\frac{d}{dy}$: $-\sin(y) = \frac{dx}{dy} + 1$. So

$$\frac{dx}{dy} = -\sin(x) - 1$$

Notice:

$$rac{dy}{dx} = 1 / \left(rac{dx}{dy}
ight)$$

This is true in general!

Using implicit differentiation for good: Inverse functions.

Remember:

(1) $y = e^x$ has a slope through the point (0,1) of 1.

(2) The natural log is the *inverse* to e^x , so

$$y = \ln x \implies e^y = x$$



To find the derivative of ln(x), use implicit differentiation!

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$rac{dy}{dx}e^y=1$$
 so

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of ln(x)?" and got back and answer with y in it!

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of ln(x)?" and got back and answer with y in it! **Solution:** Substitute back!

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}}$$

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of ln(x)?" and got back and answer with y in it! **Solution:** Substitute back!

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$$

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

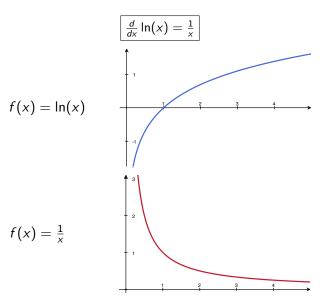
$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of ln(x)?" and got back and answer with y in it! **Solution:** Substitute back!

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

Does it make sense?



Calculate

- 1. $\frac{d}{dx} \ln x^2$
- $2. \quad \frac{d}{dx} \ln(\sin(x^2))$
- 3. $\frac{d}{dx}\log_3(x)$
 - [hint: $\log_a x = \frac{\ln x}{\ln a}$]

Back to inverses

In the case where $y = \ln(x)$, we used the fact that $\ln(x) = f^{-1}(x)$, where $f(x) = e^x$, and got

$$\frac{d}{dx}\ln(x)=\frac{1}{e^{\ln(x)}}.$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$:

Back to inverses

In the case where $y = \ln(x)$, we used the fact that $\ln(x) = f^{-1}(x)$, where $f(x) = e^x$, and got

$$\frac{d}{dx}\ln(x)=\frac{1}{e^{\ln(x)}}.$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$:

(1) Rewrite
$$y = f^{-1}(x)$$
 as $f(y) = x$.

Back to inverses

In the case where $y = \ln(x)$, we used the fact that $\ln(x) = f^{-1}(x)$, where $f(x) = e^x$, and got

$$\frac{d}{dx}\ln(x)=\frac{1}{e^{\ln(x)}}.$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$:

(1) Rewrite
$$y = f^{-1}(x)$$
 as $f(y) = x$.

(2) Use implicit differentiation:

$$f'(y) * rac{dy}{dx} = 1$$
 so

$$\boxed{\frac{dy}{dx}=\frac{1}{f'(y)}=\frac{1}{f'(f^{-1}(x))}}.$$

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1.
$$\frac{d}{dx} \ln(x)$$
 (the inverse of e^x)

2.
$$\frac{d}{dx}\sqrt{x}$$
 (the inverse of x^2)

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x) In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$.

2.
$$\frac{d}{dx}\sqrt{x}$$
 (the inverse of x^2)

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x) In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$. We'll also need $f'(x) = e^x$.

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2)

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x) In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$. We'll also need $f'(x) = e^x$. So $\boxed{\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}}$ \odot

2.
$$\frac{d}{dx}\sqrt{x}$$
 (the inverse of x^2)

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x) In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$. We'll also need $f'(x) = e^x$. So $\boxed{\frac{d}{d}\ln(x) = \frac{1}{d}}$ \odot

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}$$

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2) In the notation above, $f^{-1}(x) = \sqrt{x}$ and $f(x) = x^2$.

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x) In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$. We'll also need $f'(x) = e^x$. So

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}$$
 ©

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2) In the notation above, $f^{-1}(x) = \sqrt{x}$ and $f(x) = x^2$. We'll also need f'(x) = 2x.

Examples

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx}\ln(x)$ (the inverse of e^x) In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$. We'll also need $f'(x) = e^x$. So

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}$$

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2) In the notation above, $f^{-1}(x) = \sqrt{x}$ and $f(x) = x^2$. We'll also need f'(x) = 2x. So

$$\frac{d}{dx}\sqrt{x} = \frac{1}{2*(\sqrt{x})}$$

Inverse trig functions

Two notations:

$$\begin{array}{ccc} f(x) & f^{-1}(x) \\ \hline sin(x) & sin^{-1}(x) = \arcsin(x) \\ cos(x) & cos^{-1}(x) = \arccos(x) \\ tan(x) & tan^{-1}(x) = \arctan(x) \\ sec(x) & sec^{-1}(x) = \arccos(x) \\ csc(x) & csc^{-1}(x) = \arccos(x) \\ cot(x) & cot^{-1}(x) = \arccos(x) \end{array}$$

Inverse trig functions

Two notations:

$$\begin{array}{ccc} f(x) & f^{-1}(x) \\ \hline \sin(x) & \sin^{-1}(x) = \arcsin(x) \\ \cos(x) & \cos^{-1}(x) = \arccos(x) \\ \tan(x) & \tan^{-1}(x) = \arctan(x) \\ \sec(x) & \sec^{-1}(x) = \arctan(x) \\ \sec(x) & \sec^{-1}(x) = \arccos(x) \\ \csc(x) & \csc^{-1}(x) = \arccos(x) \\ \cot(x) & \cot^{-1}(x) = \arccos(x) \end{array}$$

There are lots of points we know on these functions...

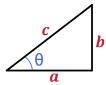
Examples:

1. Since
$$\sin(\pi/2) = 1$$
, we have $\arcsin(1) = \pi/2$

2. Since
$$\cos(\pi/2) = 0$$
, we have $\arccos(0) = \pi/2$
Etc...

In general:

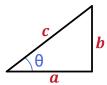
 $arc_{(-)}$ takes in a ratio and spits out an angle:



$\cos(\theta) = a/c$	SO	$\arccos(a/c) = \theta$
$\sin(heta)=b/c$	SO	$\arcsin(b/c) = heta$
an(heta)=b/a	SO	$\arctan(b/a) = heta$

In general:

arc__(-) takes in a ratio and spits out an angle:

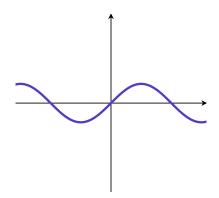


$\cos(heta) = a/c$	SO	$\arccos(a/c) = heta$
$\sin(heta)=b/c$	SO	$\arcsin(b/c) = heta$
an(heta)=b/a	SO	$\arctan(b/a) = heta$

Domain problems:

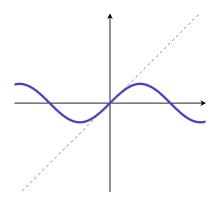
 $\sin(0) = 0,$ $\sin(\pi) = 0,$ $\sin(2\pi) = 0,$ $\sin(3\pi) = 0,...$

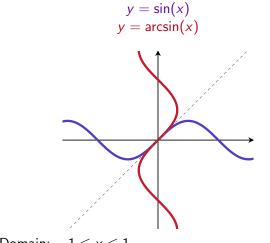
So which is the right answer to $\arcsin(0)$, really?



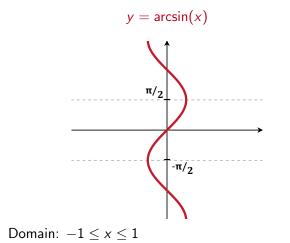
 $\mathsf{Domain}/\mathsf{range}$

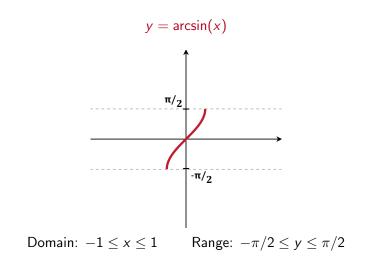
 $y = \sin(x)$



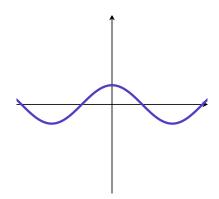


Domain: $-1 \le x \le 1$

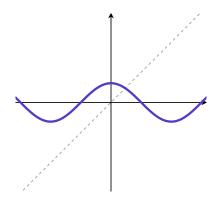


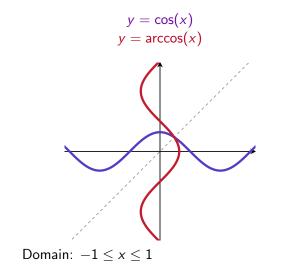


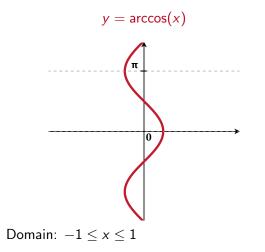
 $\mathsf{Domain}/\mathsf{range}$

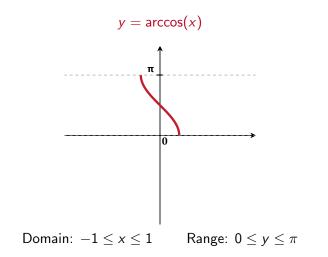


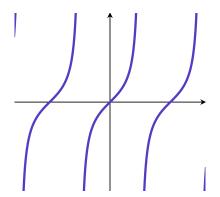
 $y = \cos(x)$

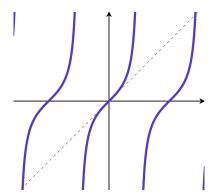


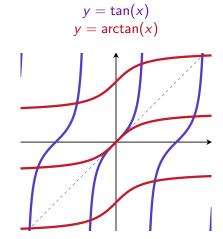




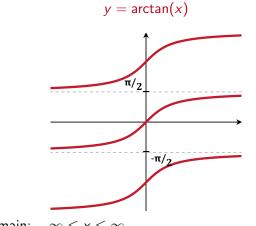




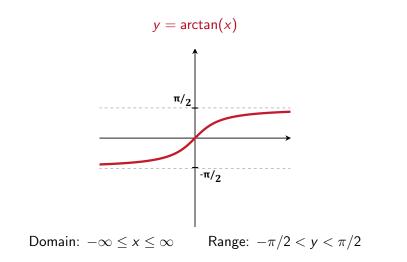


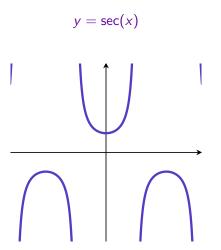


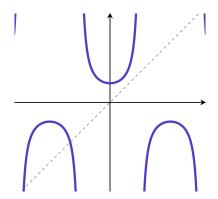
Domain: $-\infty \le x \le \infty$

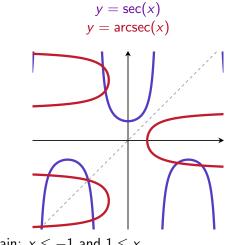


Domain: $-\infty \le x \le \infty$

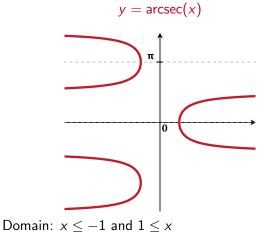


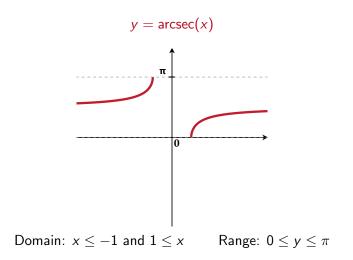


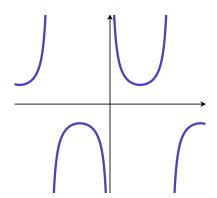




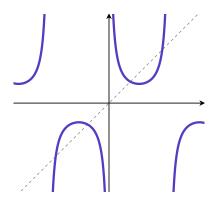
Domain: $x \leq -1$ and $1 \leq x$

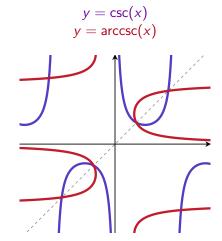




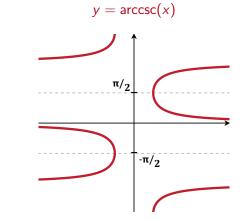


 $y = \csc(x)$

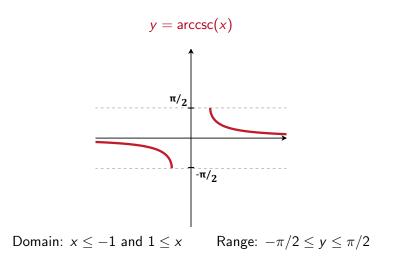


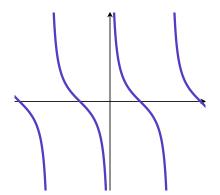


Domain: $x \leq -1$ and $1 \leq x$

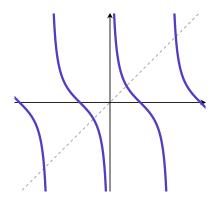


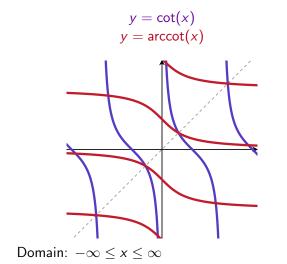
Domain: $x \leq -1$ and $1 \leq x$

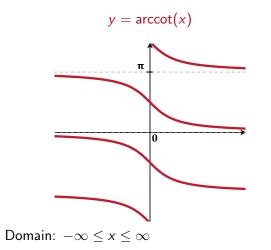


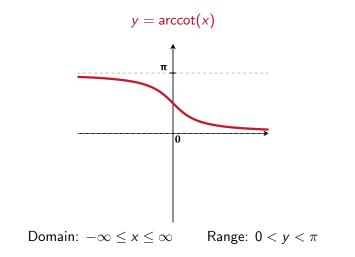


 $y = \cot(x)$

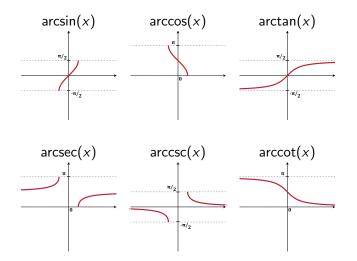








Graphs



Back to Derivatives

Recall:

f(x)	f'(x)
sin(x)	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\sec^2(x)$
sec(x)	sec(x)tan(x)
$\csc(x)$	$-\csc(x)\cot(x)$
$\cot(x)$	$-\csc^2(x)$

Back to Derivatives

Use implicit differentiation to calculate the derivatives of

- 1. $\arcsin(x)$
- 2. $\arctan(x)$

Use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

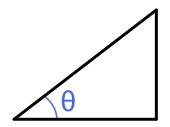
to check your answers, and then to calculate the derivatives of the other inverse trig functions:

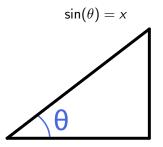
- 1. $\frac{d}{dx} \arccos(x)$
- 2. $\frac{d}{dx} \operatorname{arcsec}(x)$
- 3. $\frac{d}{dx} \operatorname{arccsc}(x)$
- 4. $\frac{d}{dx} \operatorname{arccot}(x)$

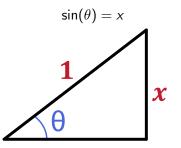
Using implicit differentiation to calculate $\frac{d}{dx} \arcsin(x)$

If
$$y = \arcsin(x)$$
 then $x = \sin(y)$.

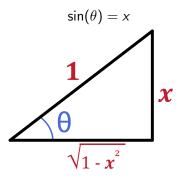
Take
$$\frac{d}{dx}$$
 of both sides of $x = \sin(y)$:
Left hand side: $\frac{d}{dx}x = 1$
Right hand side: $\frac{d}{dx}\sin(y) = \cos(y)*\frac{dy}{dx} = \cos(\arcsin(x))*\frac{dy}{dx}$
So
 $\frac{dy}{dx} = \frac{1}{\cos(\arcsin(x))}$.

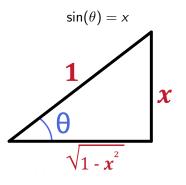




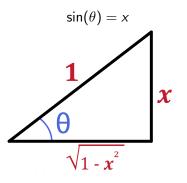


Key: This is a simple triangle to write down whose angle θ has $sin(\theta) = x$

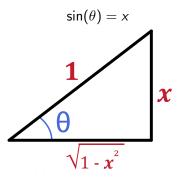




So
$$\cos(\theta) = \sqrt{1-x^2}/1$$



So
$$\cos(\arcsin(x)) = \sqrt{1-x^2}$$



So
$$\cos(\arcsin(x)) = \sqrt{1-x^2}$$

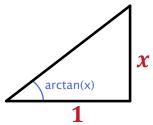
So
$$\frac{d}{dx} \operatorname{arcsin}(x) = \frac{1}{\cos(\operatorname{arcsin}(x))} = \frac{1}{\sqrt{1-x^2}}$$

Calculating $\frac{d}{dx} \arctan(x)$.

We found that

$$\frac{d}{dx}\arctan(x) = \frac{1}{\sec^2(x)} = \left(\frac{1}{\sec(x)}\right)^2$$

Simplify this expression using



To simplify the rest, use the triangles

