

Pick a vertex. Let t(v) be the "temporary" distance from that vertex. Iteratively absorb closest vertices possible (minimal t(v) and update distances to $\min(t(v), t(u) + w(uv))$. (Ties broken arbitrarily)

Pick a vertex. Let t(v) be the "temporary" distance from that vertex. Iteratively absorb closest vertices possible (minimal t(v) and update distances to $\min(t(v), t(u) + w(uv))$. (Ties broken arbitrarily)

	add to S	t(a)	t(b)	t(c)	t(d)	t(f)	t(g)	t(h)
_	e	∞	4	1	∞	5	10	∞

Pick a vertex. Let t(v) be the "temporary" distance from that vertex. Iteratively absorb closest vertices possible (minimal t(v) and update distances to $\min(t(v), t(u) + w(uv))$. (Ties broken arbitrarily)

	add to S	t(a)	t(b)	t(c)	t(d)	t(f)	t(g)	t(h)
_	e	∞	4	1	∞	5	10	∞
	c	∞	4	1	∞	5	10	∞

Pick a vertex. Let t(v) be the "temporary" distance from that vertex. Iteratively absorb closest vertices possible (minimal t(v) and update distances to $\min(t(v), t(u) + w(uv))$. (Ties broken arbitrarily)

add to S	t(a)	t(b)	t(c)	t(d)	t(f)	t(g)	t(h)
e	∞	4	1	∞	5	10	∞
c	∞	4	1	∞	5	10	∞
b	8	4	1	14	5	10	∞

Pick a vertex. Let t(v) be the "temporary" distance from that vertex. Iteratively absorb closest vertices possible (minimal t(v) and update distances to $\min(t(v), t(u) + w(uv))$. (Ties broken arbitrarily)

add to S	t(a)	t(b)	t(c)	t(d)	t(f)	t(g)	t(h)
e	∞	4	1	∞	5	10	∞
c	∞	4	1	∞	5	10	∞
b	8	4	1	14	5	10	∞
f	8	4	1	8	5	10	∞

Pick a vertex. Let t(v) be the "temporary" distance from that vertex. Iteratively absorb closest vertices possible (minimal t(v) and update distances to $\min(t(v), t(u) + w(uv))$. (Ties broken arbitrarily)

add to S	t(a)	t(b)	t(c)	t(d)	t(f)	t(g)	t(h)
\overline{e}	∞	4	1	∞	5	10	∞
c	∞	4	1	∞	5	10	∞
b	8	4	1	14	5	10	∞
f	8	4	1	8	5	10	∞
a	8	4	1	8	5	10	∞

Pick a vertex. Let t(v) be the "temporary" distance from that vertex. Iteratively absorb closest vertices possible (minimal t(v) and update distances to $\min(t(v), t(u) + w(uv))$. (Ties broken arbitrarily)

add to S	t(a)	t(b)	t(c)	t(d)	t(f)	t(g)	t(h)
\overline{e}	∞	4	1	∞	5	10	∞
c	∞	4	1	∞	5	10	∞
b	8	4	1	14	5	10	∞
f	8	4	1	8	5	10	∞
a	8	4	1	8	5	10	∞
d	8	4	1	8	5	10	∞

Pick a vertex. Let t(v) be the "temporary" distance from that vertex. Iteratively absorb closest vertices possible (minimal t(v) and update distances to $\min(t(v), t(u) + w(uv))$. (Ties broken arbitrarily)

	add to S	t(a)	t(b)	t(c)	t(d)	t(f)	t(g)	t(h)
-	e	∞	4	1	∞	5	10	∞
	c	∞	4	1	∞	5	10	∞
	b	8	4	1	14	5	10	∞
	f	8	4	1	8	5	10	∞
	a	8	4	1	8	5	10	∞
	d	8	4	1	8	5	10	∞
	g	8	4	1	8	5	10	∞

Pick a vertex. Let t(v) be the "temporary" distance from that vertex. Iteratively absorb closest vertices possible (minimal t(v) and update distances to $\min(t(v), t(u) + w(uv))$. (Ties broken arbitrarily)

Distance from e:

add to S	t(a)	t(b)	t(c)	t(d)	t(f)	t(g)	t(h)
e	∞	4	1	∞	5	10	∞
c	∞	4	1	∞	5	10	∞
b	8	4	1	14	5	10	∞
f	8	4	1	8	5	10	∞
a	8	4	1	8	5	10	∞
d	8	4	1	8	5	10	∞
g	8	4	1	8	5	10	∞

(Stop when $t(v) = \infty$ for all $v \notin S$, and set d(e, v) = t(v).)