Kruskal's algorithm (for minimal trees)

Iteratively add smallest edge possible.
(Ties broken arbitrarily)

®
4
1 1
d e
10
3

f 10 ¢

Kruskal's algorithm (for minimal trees)

Iteratively add smallest edge possible.
(Ties broken arbitrarily)

Kruskal's algorithm (for minimal trees)

Iteratively add smallest edge possible.
(Ties broken arbitrarily)

Kruskal's algorithm (for minimal trees)

Iteratively add smallest edge possible.
(Ties broken arbitrarily)

Kruskal's algorithm (for minimal trees)

Iteratively add smallest edge possible.
(Ties broken arbitrarily)

@ O

10

f 10 ¢

Kruskal's algorithm (for minimal trees)

Iteratively add smallest edge possible.
(Ties broken arbitrarily)

®
4
1 1
d e
10
3

f 10 ¢

Kruskal's algorithm (for minimal trees)

Iteratively add smallest edge possible.
(Ties broken arbitrarily)

Prim's algorithm (for minimal trees)

Pick a vertex to start from.
Iteratively absorb smallest edge possible.
(Ties broken arbitrarily)

¥ 10

10

Prim's algorithm (for minimal trees)

Pick a vertex to start from.
Iteratively absorb smallest edge possible.
(Ties broken arbitrarily)

Prim's algorithm (for minimal trees)

Pick a vertex to start from.
Iteratively absorb smallest edge possible.
(Ties broken arbitrarily)

Prim's algorithm (for minimal trees)

Pick a vertex to start from.
Iteratively absorb smallest edge possible.
(Ties broken arbitrarily)

Prim's algorithm (for minimal trees)

Pick a vertex to start from.
Iteratively absorb smallest edge possible.
(Ties broken arbitrarily)

10

Prim's algorithm (for minimal trees)

Pick a vertex to start from.
Iteratively absorb smallest edge possible.
(Ties broken arbitrarily)

Prim's algorithm (for minimal trees)

Pick a vertex to start from.
Iteratively absorb smallest edge possible.
(Ties broken arbitrarily)

Prim's algorithm (for minimal trees)

Pick a vertex to start from.
Iteratively absorb smallest edge possible.
(Ties broken arbitrarily)

Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.
Iteratively absorb closest vertices possible (minimal ¢(v) and update
distances to min(¢(v), t(u) + w(uv)).

(Ties broken arbitrarily)

Distance from e:

add to

b S| ta) | (b) | te) | d) | ¢(f) | tg) | t(h)

>0

Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.
Iteratively absorb closest vertices possible (minimal ¢(v) and update
distances to min(¢(v), t(u) + w(uv)).

(Ties broken arbitrarily)

Distance from e:

add to

S| ta) | b) | te) | ¢d) | ¢(f) | tg) | t(h)
5

e 00 4 1 00

Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.
Iteratively absorb closest vertices possible (minimal ¢(v) and update
distances to min(¢(v), t(u) + w(uv)).

(Ties broken arbitrarily)

Distance from e:

S | ta) | tb) | t(c) | td) | t(f) | t(g) | t(R)
e 00 4 1 00 5 10 00
c 00 4 00 5 10 00

Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.
Iteratively absorb closest vertices possible (minimal ¢(v) and update
distances to min(¢(v), t(u) + w(uv)).

(Ties broken arbitrarily)

Distance from e:

add to

a 4, b g ¢ S | tla) | tb) | t(c) | td) | t(f) | tlg) | t(h)
e 00 4 1 00 5 10 00

1 ' ‘ 1 c 00 4 1 00 5 10 00
b 8 4 | 14 5 10 00

>0

Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.
Iteratively absorb closest vertices possible (minimal ¢(v) and update
distances to min(¢(v), t(u) + w(uv)).

(Ties broken arbitrarily)

Distance from e:

add to

a 4, b g ¢ S | tla) | tb) | tle) | t(d) | t(f) | tlg) | t(h)
e 00 4 1 00 5 10 00

1 ' ‘ 1 c 00 4 1 00 5 10 00
b 8 4 1 14 5 10 o)

d (Fl 8l 4] 1] 8| 5]10] o

Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.

Iteratively absorb closest vertices possible (minimal ¢(v) and update

distances to min(¢(v), t(u) + w(uw)).

(Ties broken arbitrarily)

Distance from e:

add to

a 4 b o5 S | tla) | tb) | tle) | t(d) | t(f) | tlg) | t(h)
e 00 4 1 00 5 10 00

1 ' ‘ 1 c 00 4 1 00 5 10 00
b 8 4 1 14 5 10 o)

d (Fl 8l 4] 1] 8| 5]10] o
D 10 a 8 1 | 8 5 110 | oo

Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.

Iteratively absorb closest vertices possible (minimal ¢(v) and update

distances to min(¢(v), t(u) + w(uw)).

(Ties broken arbitrarily)

Distance from e:

add to

b S

w

= .
o

LI RO O

t(a) | t(b) | t(c) | t(d) | t(f) | t(g) | t(h)
00 4 1 00 5 10 00
00 4 1 00 5 10 00
8 4 1 14 5 10 00
8 4 1 8 5 10 00
8 | 1 8 5 10 00
8 |] 8 5 10 00

Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.

Iteratively absorb closest vertices possible (minimal ¢(v) and update

distances to min(¢(v), t(u) + w(uw)).

(Ties broken arbitrarily)

Distance from e:

add to
a 4 b g5 c S | ta) [t(b) | t(e) | t(d) | t(f) | tlg) | t(R)
e 00 4 1 00 5 10 00
11 c 0 4 1 00 5 10 00
b 8 4 1 |14] 5 | 10| o
d ‘ Fls a1] 8] 5]10]
D 10 a 8 ! | 8 5 1 10 | oo
° d 8 | | 8 5110 | oo
o0y gl s |4l 1] 8] 5 |10] o

Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.
Iteratively absorb closest vertices possible (minimal ¢(v) and update

distances to min(¢(v), t(u) + w(uw)).
(Ties broken arbitrarily)

Distance from e:

add to
W4 b g S | ta) | 1) | t(e) | t(d) | t(f) | t(g) | t(h)
e 00 4 1 00 5 10 00
11 c 00 4 1 00 5 10 00
b 8 4 1 14 5 10 o)
d (Fls |l a1 8] 5|10
D 10 a 8 1 | 8 5 110 | oo
® d 8 |] 8 5 10 0
hooof 10y g | sl a1]85 |10

(Stop when t(v) = oo for all v ¢ S,
and set d(e,v) = t(v).)

