Kruskal's algorithm (for minimal trees)

Iteratively add smallest edge possible.
(Ties broken arbitrarily)
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Iteratively add smallest edge possible.
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Prim's algorithm (for minimal trees)

Pick a vertex to start from.
Iteratively absorb smallest edge possible.
(Ties broken arbitrarily)
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Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.
Iteratively absorb closest vertices possible (minimal ¢(v) and update
distances to min(¢(v), t(u) + w(uv)).

(Ties broken arbitrarily)

Distance from e:

add to

b S| ta) | (b) | te) | d) | ¢(f) | tg) | t(h)
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Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.

Iteratively absorb closest vertices possible (minimal ¢(v) and update
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Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.

Iteratively absorb closest vertices possible (minimal ¢(v) and update
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Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.
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Dijkstra's algorithm (for minimal paths/distance)

Pick a vertex. Let t(v) be the “temporary” distance from that vertex.
Iteratively absorb closest vertices possible (minimal ¢(v) and update

distances to min(¢(v), t(u) + w(uw)).
(Ties broken arbitrarily)
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(Stop when t(v) = oo for all v ¢ S,
and set d(e,v) = t(v).)




