MATH 36 DAILY ASSIGNMENT \#8 (LINEAR ALGEBRA APPROACH)

We want to find the steady state of the following system of equations:

$$
\left[\begin{array}{l}
a_{n+1} \\
b_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
4 & 4 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Setting $a_{n+1}=a_{n}$ and $b_{n+1}=b_{n}$ we can do some algebra:

$$
\begin{array}{rlrl}
{\left[\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right]} & =\left[\begin{array}{cc}
4 & 4 \\
2 & -2
\end{array}\right]\left[\begin{array}{c}
a_{n} \\
b_{n}
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
4 & 4 \\
2 & -2
\end{array}\right]\right)\left[\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right] & = & {\left[\begin{array}{c}
-2 \\
1
\end{array}\right]} \\
{\left[\begin{array}{cc}
-3 & -4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right]} & = & {\left[\begin{array}{c}
-2 \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right]} & =\frac{1}{17}\left[\begin{array}{cc}
-3 & -4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
{\left[\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right]} & = & {\left[\begin{array}{c}
2 / 17 \\
7 / 17
\end{array}\right]}
\end{array}
$$

This gives us our steady state and suggests how we might evaluate the stability. Instead of looking directly at $X_{n}=\left[\begin{array}{l}a_{n} \\ b_{n}\end{array}\right]$ we instead consider the equivalent equation:

$$
\left[\begin{array}{l}
a_{n+1} \\
b_{n+1}
\end{array}\right]-\left[\begin{array}{c}
2 / 17 \\
7 / 17
\end{array}\right]=\left[\begin{array}{cc}
4 & 4 \\
2 & -2
\end{array}\right]\left(\left[\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right]-\left[\begin{array}{c}
2 / 17 \\
7 / 17
\end{array}\right]\right)
$$

Although this is a simple modification this makes it clear why the eigenvalues of $\left[\begin{array}{cc}4 & 4 \\ 2 & -2\end{array}\right]$ control the stability since the left hand side of the equation is the difference between the current state and the equilibrium point. Since the eigenvalues of the matrix are $1 \pm \sqrt{17}$ which are both greater than 1 in magnitude it must be the case that even a small deviation from the equilibrium point will lead to exponential divergence. On the other hand, if the eigenvalues had been smaller than 1 then the equilibrium point would have been stable.

The attached MatLab code demonstrates this behavior. I adjusted the plot so that the y-axis is logarithmic so you can see the divergence. Running it with
>> m36hw8(2/17,7/17);
shows the expected steady state, while running it with
>> m36hw8(2/17+.000001,7/17+.000001);
shows the divergence and the instability of the system (next page).
Department of Mathematics, Dartmouth College
E-mail address: ddeford@math.dartmouth.edu

