Math 35: Real Analysis

Winter 2018
Monday 01/22/18

Lecture 8

Chapter 2 - Sequences

Chapter 2.1-Convergent sequences

Aim: Give a rigorous definition of convergence for sequences.
Definition 1 A sequence (of real numbers)

$$
a: \mathbb{N} \rightarrow \mathbb{R}, n \mapsto a(n)
$$

is a function from the natural numbers to the real numbers. Though it is a function it is usually denoted as a list

$$
\left(a_{n}\right)_{n \in \mathbb{N}} \text { or }\left(a_{n}\right)_{n} \text { or }\left\{a_{n}\right\} \text { (notation from the book) }
$$

The numbers $a_{1}, a_{2}, a_{3}, \ldots$ are called the terms of the sequence.
Example 2: Find the first five terms of the following sequences an then sketch the sequence a) in a dot-plot.
a) $\left(\frac{(-1)^{n}}{n}\right)_{n \in \mathbb{N}}$.
b) $\left(\frac{2^{n}}{n!}\right)_{n \in \mathbb{N}}$.
c) the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined by

$$
a_{1}=1, a_{2}=1 \text { and } a_{n}=a_{n-1}+a_{n-2} \text { for all } n \geq 3 \text {. (Fibonacci sequence) }
$$

Math 35: Real Analysis
 Winter 2018

Similar as for functions from \mathbb{R} to \mathbb{R} we have the following definitions for sequences:
Definition 3 (bounded sequences) Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers then
a) the sequence $\left(a_{n}\right)_{n}$ is bounded above if there is an $M \in \mathbb{R}$, such that

$$
a_{n} \leq M \text { for all } n \in \mathbb{N} .
$$

In this case M is called an upper bound of $\left(a_{n}\right)_{n}$.
b) the sequence $\left(a_{n}\right)_{n}$ is bounded below if there is an $m \in \mathbb{R}$, such that

$$
m \leq a_{n} \text { for all } n \in \mathbb{N}
$$

In this case m is called a lower bound of $\left(a_{n}\right)_{n}$.
c) the sequence $\left(a_{n}\right)_{n}$ is bounded if there is an $\tilde{M} \in \mathbb{R}$, such that

$$
\left|a_{n}\right| \leq \tilde{M} \text { for all } n \in \mathbb{N} .
$$

In this case \tilde{M} is called a bound of $\left(a_{n}\right)_{n}$.
Note: This means a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded from above \backslash bounded from below \backslash bounded if and only if the set $S=\left\{a_{n}, n \in \mathbb{N}\right\}$ is bounded from above \backslash bounded from below \backslash bounded.

Exercise: Categorize the three sequences from Example 2.

Definition 4 (monotone sequences) Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers then
a) the sequence $\left(a_{n}\right)_{n}$ is increasing if

$$
a_{n} \leq a_{n+1} \text { for all } n \in \mathbb{N}
$$

and strictly increasing if $a_{n}<a_{n+1}$ for all $n \in \mathbb{N}$.
b) the sequence $\left(a_{n}\right)_{n}$ is decreasing if

$$
a_{n} \geq a_{n+1} \text { for all } n \in \mathbb{N}
$$

and strictly decreasing if $a_{n}>a_{n+1}$ for all $n \in \mathbb{N}$.

Math 35: Real Analysis
 Winter 2018

c) the sequence $\left(a_{n}\right)_{n}$ is monotone if it is increasing or decreasing and strictly monotone if it is strictly increasing or strictly decreasing.

Exercise: Which of the sequences from Example 2 are monotone? Prove that the sequence 2 b) is strictly decreasing for $n \geq 2$ and that the sequence in 2 c) is strictly increasing for $n \geq 2$.

Math 35: Real Analysis
 Winter 2018

Definition 5 A sequence $\left(a_{n}\right)_{n}$ converges to a number a if for all $\epsilon>0$ there is an $N(\epsilon)=N \in \mathbb{N}$ such that

$$
\left|a-a_{n}\right|<\epsilon \text { for all } n \geq N(\epsilon)
$$

The number a is called the limit of the sequence and we write

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

The sequence $\left(a_{n}\right)_{n}$ is called convergent if there is a number a, such that the sequence converges to a. It is called divergent if it does not converge.

Note: This means that for a given ϵ all values of $\left(a_{n}\right)_{n}$ must satisfy

$$
a_{n} \in(a-\epsilon, a+\epsilon) \text { for all } n \geq N(\epsilon) .
$$

Example: Consider the sequence $\left(\frac{(-1)^{n}}{n}\right)_{n \in \mathbb{N}}$ with limit 0 .
Find $N\left(\frac{1}{5}\right)$ and $N\left(\frac{1}{2}\right)$. Is it sufficient to make a single calculation?
Then show that this sequence is convergent. Finally, draw a picture explaining Definition 3 in this case.

Math 35: Real Analysis
 Winter 2018

Theorem 6 If a sequence $\left(a_{n}\right)_{n}$ is convergent, then the limit is unique.
proof: By contradiction: Suppose that $\left(a_{n}\right)_{n}$ has two limits, a and b, where $a<b$ i.e $b-a>0$. Take $\epsilon=\frac{b-a}{4}$.

Theorem 7 A convergent sequence $\left(a_{n}\right)_{n}$ is bounded.
proof: Idea: The first n values are bounded and the remainder lie in a neighborhood of the limit. Take $\epsilon=1$.

Math 35: Real Analysis
 Winter 2018

Note: The statement $\left(a_{n}\right)_{n}$ is bounded $\Rightarrow\left(a_{n}\right)_{n}$ converges is not true. Couterexample:

In a similar fashion as in Definition 3 we define when the limit of a sequence is infinity.
Definition 8 Let $\left(a_{n}\right)_{n}$ be a sequence. We say that
1.) The limit of the sequence $\left(a_{n}\right)_{n}$ is infinity or $\lim _{n \rightarrow \infty} a_{n}=\infty$ if for all $M>0$ there is $N=N(M)$, such that

$$
a_{n}>M \text { for all } n \geq N(M) .
$$

2.) The limit of the sequence $\left(a_{n}\right)_{n}$ is minus infinity or $\lim _{n \rightarrow \infty} a_{n}=-\infty$ if for all $M<0$ there is $N=N(M)$, such that

$$
a_{n}<M \text { for all } n \geq N(M)
$$

Theorem 9 Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be two convergent sequences, such that

$$
\lim _{n \rightarrow \infty} a_{n}=a \text { and } \lim _{n \rightarrow \infty} b_{n}=b
$$

Then we have
a) For all $c \in \mathbb{R}$ we have: $\lim _{n \rightarrow \infty} c \cdot a_{n}=c \cdot a$.
b) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}=a+b$.
c) $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}=a \cdot b$.
d) If $b_{n} \neq 0$ for all n and $b \neq 0$ then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{a}{b}$.
proof:

Math 35: Real Analysis
Winter 2018

Math 35: Real Analysis
 Winter 2018

Monday 01/22/18

Lecture 9

Example: Use the fact that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ and Theorem 9 to show that

$$
\lim _{n \rightarrow \infty} a(n)=\lim _{n \rightarrow \infty} \frac{3 n^{2}+2 n-1}{n^{2}+n}=3
$$

Hint: Divide first the numerator and denominator of $a(n)$ by n^{2}.

Math 35: Real Analysis
 Winter 2018

Theorem 10 (Squeeze Theorem) Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be two convergent sequences. Let $\left(x_{n}\right)_{n}$ be a sequence, such that

$$
a_{n} \leq x_{n} \leq b_{n} \quad \text { for all } \quad n \in \mathbb{N} \quad \text { and } \quad \lim _{n \rightarrow \infty} a_{n}=x=\lim _{n \rightarrow \infty} b_{n}
$$

Then $\left(x_{n}\right)_{n}$ converges and $\lim _{n \rightarrow \infty} x_{n}=x$.
proof: For fixed $\epsilon>0$ we know that

$$
\left|a_{n}-x\right|<\epsilon \quad \text { for all } n \geq N_{1}(\epsilon) \quad \text { and } \quad\left|b_{n}-x\right|<\epsilon \quad \text { for all } n \geq N_{2}(\epsilon)
$$

Especially for $n \geq N=\max \left\{N_{1}(\epsilon), N_{2}(\epsilon)\right\}$ we have

$$
\begin{equation*}
x-\epsilon<a_{n} \leq x_{n} \leq b_{n}<x+\epsilon \tag{}
\end{equation*}
$$

This means that $\left|x-x_{n}\right|<\epsilon$ for all $n \geq N$.
Example: Use the Squeeze Theorem to show that $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n}=0$.
Then sketch the sequences involved in a dot-plot.

Math 35: Real Analysis
 Winter 2018

Chapter 2.2-Montone and Cauchy sequences

Aim: A sequence converges if and only if its elements approach each other. This is a consequence of the completeness of \mathbb{R}.

Theorem 1 A monotone sequence converges, if and only if it is bounded.
proof: " \Rightarrow " A convergent sequence is bounded by 2.1.Theorem 7, hence a monotone sequence is bounded.
$" \Leftarrow "$ We prove the statement for an increasing sequence $\left(b_{n}\right)_{n}$. So we know that

$$
b_{n} \leq b_{n+1} \quad \text { for all } \quad n \in \mathbb{N} .
$$

Note: The key is to use the Completeness Axiom to show that an increasing sequence $\left(b_{n}\right)_{n}$ has a supremum β. We showed that $\lim _{n \rightarrow \infty} b_{n}=\beta$.

Math 35: Real Analysis
 Winter 2018

Exercise 2: Consider the sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ defined by $b_{0}=2$ and $b_{n+1}=5-\frac{4}{b_{n}}$.
a) Find the first four terms of the sequence.
b) Suppose that $\lim _{n \rightarrow \infty} b_{n}=b$, where $b \neq 0$. Using the definition of the sequence can you find all possible limits?
c) Show by induction that all values of the sequence are contained in the interval $[1,4]$.
d) Show by induction that the sequence is increasing.
e) Use Theorem 1 and conclude that the limit exists. What is the value ?

