Monday 01/22/18

Lecture 8

Chapter 2 - Sequences

Chapter 2.1 - Convergent sequences

Aim: Give a rigorous definition of convergence for sequences.

Definition 1 A sequence (of real numbers)

$$a: \mathbb{N} \to \mathbb{R}, n \mapsto a(n)$$

is a function from the natural numbers to the real numbers. Though it is a function it is usually denoted as a list

 $(a_n)_{n\in\mathbb{N}}$ or $(a_n)_n$ or $\{a_n\}$ (notation from the book)

The numbers a_1, a_2, a_3, \ldots are called the **terms** of the sequence.

Example 2: Find the first five terms of the following sequences an then sketch the sequence a) in a dot-plot.

a) $\left(\frac{(-1)^n}{n}\right)_{n\in\mathbb{N}}.$

b)
$$\left(\frac{2^n}{n!}\right)_{n \in \mathbb{N}}$$
.

c) the sequence $(a_n)_{n \in \mathbb{N}}$ defined by

 $a_1 = 1, a_2 = 1$ and $a_n = a_{n-1} + a_{n-2}$ for all $n \ge 3$. (Fibonacci sequence)

Similar as for functions from \mathbb{R} to \mathbb{R} we have the following definitions for sequences:

Definition 3 (bounded sequences) Let $(a_n)_n$ be a sequence of real numbers then

a) the sequence $(a_n)_n$ is **bounded above** if there is an $M \in \mathbb{R}$, such that

 $a_n \leq M$ for all $n \in \mathbb{N}$.

In this case M is called an **upper bound** of $(a_n)_n$.

b) the sequence $(a_n)_n$ is **bounded below** if there is an $m \in \mathbb{R}$, such that

 $m \leq a_n$ for all $n \in \mathbb{N}$.

In this case m is called a **lower bound** of $(a_n)_n$.

c) the sequence $(a_n)_n$ is **bounded** if there is an $\tilde{M} \in \mathbb{R}$, such that

 $|a_n| \leq \tilde{M}$ for all $n \in \mathbb{N}$.

In this case \tilde{M} is called a **bound** of $(a_n)_n$.

Note: This means a sequence $(a_n)_{n \in \mathbb{N}}$ is bounded from above \setminus bounded from below \setminus bounded if and only if the set $S = \{a_n, n \in \mathbb{N}\}$ is bounded from above \setminus bounded from below \setminus bounded.

Exercise: Categorize the three sequences from **Example 2**.

Definition 4 (monotone sequences) Let $(a_n)_n$ be a sequence of real numbers then

a) the sequence $(a_n)_n$ is increasing if

$$a_n \leq a_{n+1}$$
 for all $n \in \mathbb{N}$

and strictly increasing if $a_n < a_{n+1}$ for all $n \in \mathbb{N}$.

b) the sequence $(a_n)_n$ is decreasing if

 $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$

and strictly decreasing if $a_n > a_{n+1}$ for all $n \in \mathbb{N}$.

c) the sequence $(a_n)_n$ is monotone if it is increasing or decreasing and strictly monotone if it is strictly increasing or strictly decreasing.

Exercise: Which of the sequences from **Example 2** are monotone? Prove that the sequence 2b) is strictly decreasing for $n \ge 2$ and that the sequence in 2c) is strictly increasing for $n \ge 2$.

Definition 5 A sequence $(a_n)_n$ converges to a number a if for all $\epsilon > 0$ there is an $N(\epsilon) = N \in \mathbb{N}$ such that

$$|a - a_n| < \epsilon$$
 for all $n \ge N(\epsilon)$

The number a is called the **limit** of the sequence and we write

$$\lim_{n \to \infty} a_n = a$$

The sequence $(a_n)_n$ is called **convergent** if there is a number a, such that the sequence converges to a. It is called **divergent** if it does not converge.

Note: This means that for a given ϵ all values of $(a_n)_n$ must satisfy

$$a_n \in (a - \epsilon, a + \epsilon)$$
 for all $n \ge N(\epsilon)$.

Example: Consider the sequence $\left(\frac{(-1)^n}{n}\right)_{n\in\mathbb{N}}$ with limit 0. Find $N(\frac{1}{5})$ and $N(\frac{1}{2})$. Is it sufficient to make a single calculation?

Then show that this sequence is convergent. Finally, draw a picture explaining **Definition 3** in this case.

Theorem 6 If a sequence $(a_n)_n$ is convergent, then the limit is unique.

proof: By contradiction: Suppose that $(a_n)_n$ has two limits, a and b, where a < b i.e. b - a > 0. Take $\epsilon = \frac{b-a}{4}$.

Theorem 7 A convergent sequence $(a_n)_n$ is bounded.

proof: Idea: The first *n* values are bounded and the remainder lie in a neighborhood of the limit. Take $\epsilon = 1$.

Note: The statement $(a_n)_n$ is bounded $\Rightarrow (a_n)_n$ converges is not true. Couterexample:

In a similar fashion as in **Definition 3** we define when the limit of a sequence is infinity.

Definition 8 Let $(a_n)_n$ be a sequence. We say that

1.) The limit of the sequence $(a_n)_n$ is **infinity** or $\lim_{n\to\infty} a_n = \infty$ if for all M > 0 there is N = N(M), such that

 $a_n > M$ for all $n \ge N(M)$.

2.) The limit of the sequence $(a_n)_n$ is **minus infinity** or $\lim_{n\to\infty} a_n = -\infty$ if for all M < 0 there is N = N(M), such that

$$a_n < M$$
 for all $n \ge N(M)$.

Theorem 9 Let $(a_n)_n$ and $(b_n)_n$ be two convergent sequences, such that

$$\lim_{n \to \infty} a_n = a \text{ and } \lim_{n \to \infty} b_n = b.$$

Then we have

- a) For all $c \in \mathbb{R}$ we have: $\lim_{n \to \infty} c \cdot a_n = c \cdot a$.
- b) $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = a + b.$
- c) $\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n = a \cdot b.$

d) If $b_n \neq 0$ for all n and $b \neq 0$ then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} \frac{1}{b_n} = \frac{a}{b}$.

proof:

Monday 01/22/18

Monday 01/22/18

Lecture 9

Example: Use the fact that $\lim_{n\to\infty} \frac{1}{n} = 0$ and **Theorem 9** to show that

$$\lim_{n \to \infty} a(n) = \lim_{n \to \infty} \frac{3n^2 + 2n - 1}{n^2 + n} = 3.$$

Hint: Divide first the numerator and denominator of a(n) by n^2 .

Theorem 10 (Squeeze Theorem) Let $(a_n)_n$ and $(b_n)_n$ be two convergent sequences. Let $(x_n)_n$ be a sequence, such that

 $a_n \le x_n \le b_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = x = \lim_{n \to \infty} b_n$.

Then $(x_n)_n$ converges and $\lim_{n\to\infty} x_n = x$.

proof: For fixed $\epsilon > 0$ we know that

$$|a_n - x| < \epsilon$$
 for all $n \ge N_1(\epsilon)$ and $|b_n - x| < \epsilon$ for all $n \ge N_2(\epsilon)$

Especially for $n \ge N = \max\{N_1(\epsilon), N_2(\epsilon)\}$ we have

$$x - \epsilon < a_n \le x_n \le b_n < x + \epsilon \quad (*)$$

This means that $|x - x_n| < \epsilon$ for all $n \ge N$.

Example: Use the Squeeze Theorem to show that $\lim_{n\to\infty} \frac{\cos(n)}{n} = 0$. Then sketch the sequences involved in a dot-plot.

Chapter 2.2 - Montone and Cauchy sequences

Aim: A sequence converges if and only if its elements approach each other. This is a consequence of the completeness of \mathbb{R} .

Theorem 1 A monotone sequence converges, if and only if it is bounded.

proof: " \Rightarrow " A convergent sequence is bounded by **2.1.Theorem 7**, hence a monotone sequence is bounded.

" \Leftarrow " We prove the statement for an increasing sequence $(b_n)_n$. So we know that

 $b_n \leq b_{n+1}$ for all $n \in \mathbb{N}$.

Note: The key is to use the Completeness Axiom to show that an increasing sequence $(b_n)_n$ has a supremum β . We showed that $\lim_{n\to\infty} b_n = \beta$.

Exercise 2: Consider the sequence $(b_n)_{n \in \mathbb{N}}$ defined by $b_0 = 2$ and $b_{n+1} = 5 - \frac{4}{b_n}$.

- a) Find the first four terms of the sequence.
- b) Suppose that $\lim_{n\to\infty} b_n = b$, where $b \neq 0$. Using the definition of the sequence can you find all possible limits?
- c) Show by induction that all values of the sequence are contained in the interval [1, 4].
- d) Show by induction that the sequence is increasing.
- e) Use Theorem 1 and conclude that the limit exists. What is the value ?