Math 35: Real Analysis
 Winter 2018

Friday 01/19/18

Lecture 7

Last time:

Definition Let A be an arbitrary set.
a) The set A is finite, if there is a bijective map $f: A \rightarrow\{1,2,3, \ldots, n\}$ for some $n \in \mathbb{N}$.
b) The set A is infinite, if it is not finite.
c) The set A is countably infinite, if there is a bijective map $f: A \rightarrow \mathbb{N}$.
d) The set A is countable, if it is either finite or countably infinite.
e) The set A is uncountable, if it is not countable.

Theorem 7 A subset of a countably infinite set is countable.

Corollary An infinite subset of a countably infinite set is countably infinite.

Theorem 8 A countable union of countable sets is countable.
proof: It is sufficient to prove the statement for a disjoint union $A=\biguplus_{i=1}^{\infty} A_{i}$ of countably infinte sets A_{i}. This is true as
1.) Each union of sets $\bigcup_{i=1}^{\infty} B_{i}$ can be decomposed into a disjoint union $\biguplus_{i=1}^{\infty} B_{i}^{\prime}$ of sets by removing multiple occurences.
2.) Each finite set B_{i}^{\prime} can be extended to an infinite set \tilde{B}_{i}, such that $\tilde{B}_{i} \cap B_{k}^{\prime}=\emptyset$ for all $k \neq i$.
3.) If $\biguplus_{i=1}^{\infty} \tilde{B}_{i}$ is countably infinite, then the subset $\bigcup_{i=1}^{\infty} B_{i}$ is countable by Theorem 7 .

So suppose we have a disjoint union $\biguplus_{i=1}^{\infty} A_{i}$ of countably infinte sets A_{i}. We list all elements of $A=\biguplus_{i=1}^{\infty} A_{i}$:

$$
\begin{aligned}
A_{1} & =\left\{x_{11}, x_{12}, x_{13}, \ldots, x_{1 n}, \ldots\right\} \\
A_{2} & =\left\{x_{21}, x_{22}, x_{23}, \ldots, x_{2 n}, \ldots\right\} \\
\vdots & \\
A_{m} & =\left\{x_{m 1}, x_{m 2}, x_{m 3}, \ldots, x_{m n}, \ldots\right\}
\end{aligned}
$$

Math 35: Real Analysis
 Winter 2018

Friday $01 / 19 / 18$

As the factorization into primes is unique, we know that the set of positive integers $S=\left\{2^{k} \cdot 3^{n}, n, k \in \mathbb{N}\right\}$ satisfies:

$$
\begin{equation*}
2^{k_{1}} \cdot 3^{n_{1}}=2^{k_{2}} \cdot 3^{n_{2}} \Leftrightarrow k_{1}=k_{2} \text { and } n_{1}=n_{2} \tag{*}
\end{equation*}
$$

Hence the assignment $f: S \rightarrow \biguplus_{i=1}^{\infty} A_{i}$, defined by $f\left(2^{k} \cdot 3^{n}\right)=x_{k n}$ is a well-defined map which is bijective. Hence $\biguplus_{i=1}^{\infty} A_{i}$ is in one-to-one correspondence with a subset of \mathbb{N}, which by Theorem 7 is countable. Hence $A=\biguplus_{i=1}^{\infty} A_{i}$ is also countable.

Exercise: List the correspondence of the elements of S with A_{1} and with A_{2}. Then show that $f: S \rightarrow A$ is indeed bijective.

Solution:

1.) f is surjective as for each $x_{k n} \in A$ we have that $f\left(2^{k} \cdot 3^{n}\right)=x_{k n}$.
2.) f is injective as if

$$
f\left(2^{k_{1}} \cdot 3^{n_{1}}\right)=x_{k_{1}, n_{1}}=x_{k_{2}, n_{2}}=f\left(2^{k_{2}} \cdot 3^{n_{2}}\right)
$$

then, as all elements of A are different, we have that

$$
k_{1}=k_{2} \text { and } n_{1}=n_{2} \Rightarrow 2^{k_{1}} \cdot 3^{n_{1}}=2^{k_{2}} \cdot 3^{n_{2}} .
$$

Hence f is injective. 1.) and 2.) imply that f is bijective.
3.) For A_{1} and A_{2} we have:

$$
\begin{aligned}
& A_{1}: \quad f\left(2^{1} \cdot 3^{1}\right)=x_{11}, f\left(2^{1} \cdot 3^{2}\right)=x_{12}, f\left(2^{1} \cdot 3^{3}\right)=x_{13}, \ldots, f\left(2^{1} \cdot 3^{n}\right)=x_{1 n}, \ldots \\
& A_{2}: \quad f\left(2^{2} \cdot 3^{1}\right)=x_{21}, f\left(2^{2} \cdot 3^{2}\right)=x_{22}, f\left(2^{2} \cdot 3^{3}\right)=x_{23}, \ldots, f\left(2^{2} \cdot 3^{n}\right)=x_{2 n}, \ldots
\end{aligned}
$$

Theorem 9 The following two statements are true:
1.) A set B that contains an infinite subset $A \subset B$ is infinite.
2.) A set D that contains an uncountable subset $C \subset D$ is uncountable.

proof:

1.) Suppose that B is finite, i.e. $\# B=n$ for some $n \in \mathbb{N}$. Then A is also finite, a contradiction.
2.) Suppose that D is countable, i.e. D is either finite or countably infinite. If D is finite then by 1.) the subset C is also finite, a contradiction, as an uncountable set is infinite. If D is countably infinite then by Theorem $7 C$ is countably infinite, again a contradiction. Hence D must be uncountable.

Math 35: Real Analysis
 Winter 2018

Theorem 10 The set \mathbb{Q} is countably infinite.
proof: Try to subdivide \mathbb{Q} into countably infinite subsets.
Solution: $\mathbb{Q}=\bigcup_{i=1}^{\infty} A_{i}$ where

$$
\begin{aligned}
A_{1} & =\left\{\ldots,-\frac{3}{1},-\frac{2}{1},-\frac{1}{1}, \frac{0}{1}, \frac{1}{1}, \frac{2}{1}, \frac{3}{1}, \ldots\right\} \\
A_{2} & =\left\{\ldots,-\frac{3}{2},-\frac{2}{2},-\frac{1}{2}, \frac{0}{2}, \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \ldots\right\} \\
\vdots & \\
A_{n} & =\left\{\ldots,-\frac{3}{n},-\frac{2}{n},-\frac{1}{n}, \frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \ldots\right\} \\
\vdots &
\end{aligned}
$$

Hence \mathbb{Q} is a countable union of countably infinite sets. Then Theorem 8 implies that it is countable.

Theorem 11 Each real number has a binary expansion.
proof: HW3, look at the proof of Theorem 1.20 in the book for inspiration.

Theorem 12 The real numbers in the interval $[0,1]$ are uncountable.
proof: By contradiction. Assume that $A=\{[0,1]\}$ is countable. Then there is a bijective $\operatorname{map} f: \mathbb{N} \rightarrow A$. Then we can list the elements of A with their binary expansion.

Example: $\frac{1}{4}$ has binary expansion 0.01 .
1 has the binary expansion $1.000000 \ldots$, but also $0.11111111 \ldots$
Choosing the latter expansion for 1 we can write each element $r \in[0,1]$ by

$$
r=0 . b_{1} b_{2} b_{3} \ldots b_{n} \ldots, \quad \text { where } b_{i} \in\{0,1\} \text { for all } i \in \mathbb{N} \text {. }
$$

Math 35: Real Analysis
 Winter 2018

If A is countable then we can list the elements of A with their binary expansion:

$$
\begin{aligned}
f(1) & =0 . b_{11} b_{12} b_{13} \ldots b_{1 n} \ldots \\
f(2) & =0 . b_{21} b_{22} b_{23} \ldots b_{2 n} \ldots \\
f(3) & =0 . b_{31} b_{32} b_{33} \ldots b_{3 n} \ldots \\
\vdots & \\
f(n) & =0 . b_{n 1} b_{n 2} b_{n 3} \ldots b_{n n} \ldots \\
\vdots &
\end{aligned}
$$

We now consider the element $x \in[0,1]$ with binary expansion

$$
x=0 . x_{1} x_{2} x_{3} \ldots x_{n} \ldots, \text { such that } x_{k}=\left\{\begin{array}{lll}
0 & \text { if } & b_{k k}=1 \\
1 & & b_{k k}=0 .
\end{array}\right.
$$

Then $x \in[0,1]$, but x is different from all the elements in our list as it differs from each element in the list by at least on binary place. This means that the map $f: \mathbb{N} \rightarrow A$ is not surjective as it is leaving out the element x. Hence there is no bijection between \mathbb{N} and $[0,1]$ and the set is uncountable.

Corollary 13

1.) The set \mathbb{R} of real numbers is uncountable.
2.) The set $\mathbb{R} \backslash \mathbb{Q}$ of irrational numbers is uncountable.

proof:

Exercise: Is \mathbb{Z}^{2} countable? Is \mathbb{Z}^{3} countable? In general is \mathbb{Z}^{n} countable?
What about $\mathbb{Z}^{\infty}:=\left\{\left(a_{k}\right)_{k \in \mathbb{N}}, a_{k} \in \mathbb{Z}\right\}$? (Each element of \mathbb{Z}^{∞} can be interpreted as a vector of countably infinite length.)

