Lecture 7

Last time:

Definition Let A be an arbitrary set.

- a) The set A is **finite**, if there is a bijective map $f: A \to \{1, 2, 3, ..., n\}$ for some $n \in \mathbb{N}$.
- b) The set A is **infinite**, if it is not finite.
- c) The set A is **countably infinite**, if there is a bijective map $f: A \to \mathbb{N}$.
- d) The set A is **countable**, if it is either finite or countably infinite.
- e) The set A is **uncountable**, if it is not countable.

Theorem 7 A subset of a countably infinite set is countable.

Corollary An infinite subset of a countably infinite set is countably infinite.

Theorem 8 A countable union of countable sets is countable.

proof: It is sufficient to prove the statement for a disjoint union $A = \biguplus_{i=1}^{\infty} A_i$ of countably infinite sets A_i . This is true as

- 1.) Each union of sets $\bigcup_{i=1}^{\infty} B_i$ can be decomposed into a disjoint union $\biguplus_{i=1}^{\infty} B'_i$ of sets by removing multiple occurrences.
- 2.) Each finite set B'_i can be extended to an infinite set \tilde{B}_i , such that $\tilde{B}_i \cap B'_k = \emptyset$ for all $k \neq i$.
- 3.) If $\biguplus_{i=1}^{\infty} \tilde{B}_i$ is countably infinite, then the subset $\bigcup_{i=1}^{\infty} B_i$ is countable by **Theorem 7**.

So suppose we have a disjoint union $\biguplus_{i=1}^{\infty} A_i$ of countably infinite sets A_i . We list all elements of $A = \biguplus_{i=1}^{\infty} A_i$:

 $A_{1} = \{x_{11}, x_{12}, x_{13}, \dots, x_{1n}, \dots\}$ $A_{2} = \{x_{21}, x_{22}, x_{23}, \dots, x_{2n}, \dots\}$ \vdots $A_{m} = \{x_{m1}, x_{m2}, x_{m3}, \dots, x_{mn}, \dots\}$ \vdots

As the factorization into primes is unique, we know that the set of positive integers $S = \{2^k \cdot 3^n, n, k \in \mathbb{N}\}$ satisfies:

$$2^{k_1} \cdot 3^{n_1} = 2^{k_2} \cdot 3^{n_2} \Leftrightarrow k_1 = k_2 \text{ and } n_1 = n_2.$$
 (*)

Hence the assignment $f: S \to \biguplus_{i=1}^{\infty} A_i$, defined by $f(2^k \cdot 3^n) = x_{kn}$ is a well-defined map which is bijective. Hence $\biguplus_{i=1}^{\infty} A_i$ is in one-to-one correspondence with a subset of \mathbb{N} , which by **Theorem 7** is countable. Hence $A = \biguplus_{i=1}^{\infty} A_i$ is also countable. \Box

Exercise: List the correspondence of the elements of S with A_1 and with A_2 . Then show that $f: S \to A$ is indeed bijective.

Solution:

1.) f is surjective as for each $x_{kn} \in A$ we have that $f(2^k \cdot 3^n) = x_{kn}$. 2.) f is injective as if

$$f(2^{k_1} \cdot 3^{n_1}) = x_{k_1, n_1} = x_{k_2, n_2} = f(2^{k_2} \cdot 3^{n_2})$$

then, as all elements of A are different, we have that

$$k_1 = k_2$$
 and $n_1 = n_2 \Rightarrow 2^{k_1} \cdot 3^{n_1} = 2^{k_2} \cdot 3^{n_2}$.

Hence f is injective. 1.) and 2.) imply that f is bijective. 3.) For A_1 and A_2 we have:

$$A_1 : f(2^1 \cdot 3^1) = x_{11}, f(2^1 \cdot 3^2) = x_{12}, f(2^1 \cdot 3^3) = x_{13}, \dots, f(2^1 \cdot 3^n) = x_{1n}, \dots$$

$$A_2 : f(2^2 \cdot 3^1) = x_{21}, f(2^2 \cdot 3^2) = x_{22}, f(2^2 \cdot 3^3) = x_{23}, \dots, f(2^2 \cdot 3^n) = x_{2n}, \dots$$

Theorem 9 The following two statements are true:

- 1.) A set B that contains an infinite subset $A \subset B$ is infinite.
- 2.) A set D that contains an uncountable subset $C \subset D$ is uncountable.

proof:

- 1.) Suppose that B is finite, i.e. #B = n for some $n \in \mathbb{N}$. Then A is also finite, a contradiction.
- 2.) Suppose that D is countable, i.e. D is either finite or countably infinite. If D is finite then by 1.) the subset C is also finite, a contradiction, as an uncountable set is infinite. If D is countably infinite then by **Theorem 7** C is countably infinite, again a contradiction. Hence D must be uncountable.

Theorem 10 The set \mathbb{Q} is countably infinite.

proof: Try to subdivide \mathbb{Q} into countably infinite subsets. Solution: $\mathbb{Q} = \bigcup_{i=1}^{\infty} A_i$ where

$$A_{1} = \{\dots, -\frac{3}{1}, -\frac{2}{1}, -\frac{1}{1}, \frac{0}{1}, \frac{1}{1}, \frac{2}{1}, \frac{3}{1}, \dots\}$$

$$A_{2} = \{\dots, -\frac{3}{2}, -\frac{2}{2}, -\frac{1}{2}, \frac{0}{2}, \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \dots\}$$

$$\vdots$$

$$A_{n} = \{\dots, -\frac{3}{n}, -\frac{2}{n}, -\frac{1}{n}, \frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots\}$$

$$\vdots$$

Hence \mathbb{Q} is a countable union of countably infinite sets. Then **Theorem 8** implies that it is countable.

Theorem 11 Each real number has a binary expansion.

proof: HW3, look at the proof of **Theorem 1.20** in the book for inspiration.

Theorem 12 The real numbers in the interval [0,1] are uncountable.

proof: By contradiction. Assume that $A = \{[0,1]\}$ is countable. Then there is a bijective map $f : \mathbb{N} \to A$. Then we can list the elements of A with their binary expansion.

Example: $\frac{1}{4}$ has binary expansion 0.01. 1 has the binary expansion 1.000000..., but also 0.1111111...

Choosing the latter expansion for 1 we can write each element $r \in [0, 1]$ by

 $r = 0.b_1 \ b_2 \ b_3 \dots b_n \dots$, where $b_i \in \{0, 1\}$ for all $i \in \mathbb{N}$.

If A is countable then we can list the elements of A with their binary expansion:

$$f(1) = 0.b_{11} b_{12} b_{13} \dots b_{1n} \dots$$

$$f(2) = 0.b_{21} b_{22} b_{23} \dots b_{2n} \dots$$

$$f(3) = 0.b_{31} b_{32} b_{33} \dots b_{3n} \dots$$

$$\vdots$$

$$f(n) = 0.b_{n1} b_{n2} b_{n3} \dots b_{nn} \dots$$

$$\vdots$$

We now consider the element $x \in [0, 1]$ with binary expansion

$$x = 0.x_1 x_2 x_3 \dots x_n \dots$$
, such that $x_k = \begin{cases} 0 & b_{kk} = 1 \\ 1 & b_{kk} = 0. \end{cases}$

Then $x \in [0, 1]$, but x is different from all the elements in our list as it differs from each element in the list by at least on binary place. This means that the map $f : \mathbb{N} \to A$ is not surjective as it is leaving out the element x. Hence there is no bijection between \mathbb{N} and [0, 1] and the set is uncountable.

Corollary 13

- 1.) The set \mathbb{R} of real numbers is uncountable.
- 2.) The set $\mathbb{R} \setminus \mathbb{Q}$ of irrational numbers is uncountable.

proof:

Exercise: Is \mathbb{Z}^2 countable? Is \mathbb{Z}^3 countable? In general is \mathbb{Z}^n countable?

What about $\mathbb{Z}^{\infty} := \{(a_k)_{k \in \mathbb{N}}, a_k \in \mathbb{Z}\}$? (Each element of \mathbb{Z}^{∞} can be interpreted as a vector of countably infinite length.)