Wednesday 01/17/18

Lecture 6

Last time:

Lemma 4 The following statements are equivalent:

- 1. If a, b > 0 then there is a positive integer $n \in \mathbb{N}$, such that na > b.
- 2. The set \mathbb{N} of positive integers is not bounded above.
- 3. For each $x \in \mathbb{R}$ there is an integer $n \in \mathbb{Z}$, such that $n \leq x < n + 1$.
- 4. For each $x \in \mathbb{R}^+$ there is a positive integer $n \in \mathbb{N}$, such that $\frac{1}{n} < x$.

Example: Show that $\inf(S) = 0$ for $S = \{\frac{1}{n}, n \in \mathbb{N}\}.$

Theorem 5 For all $x, y \in \mathbb{R}, x < y$ there is $q \in \mathbb{Q}$ and $r \in \mathbb{R} \setminus \mathbb{Q}$, such that

$$x < q < y$$
 and $x < r < y$.

proof:

Chapter 1.6 - Countable and uncountable sets

Aim: \mathbb{Q} and \mathbb{R} are infinite, but \mathbb{R} is "more" infinite.

To compare infinite sets, we can not just use counting arguments. We compare them by showing that there is a map that is one-to-one correspondence or bijective.

Definition 1 Let A and B be sets. A function $f : A \to B$ is a map that assigns to each element of a exactly one element f(a) = b.

Figure:

Definition 2 A function $f : A \to B$ is called

- a) injective if for all $b \in B$ there is at most one element $a \in A$, such that f(a) = b. This is equivalent to the statement: $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.
- b) surjective if for all $b \in B$ there is an element $a \in A$, such that f(a) = b. We can check for surjectivity by finding an element $a \in A$, such that f(a) = b.
- c) **bijective** or in **one-to-one correspondence** if for all $b \in B$ there is exactly one element $a \in A$, such that f(a) = b.

Figure:

Note 3: A function $f: A \to B$ is bijective if and only if there is a function $g: B \to A$, such that

$$f \circ g(b) = b$$
 for all $b \in B$ and $g \circ f(a) = a$ for all $a \in A$.

In this case we call $g = f^{-1}$ the **inverse function** of f.

Note 4: If $f : A \to B$ and $g : B \to C$ are bijective functions, then $g \circ f : A \to C$ is also a bijective function.

proofs: see book, Appendix B.2.

Wednesday 01/17/18

Example 5: Find a bijective function

- a) $f: \mathbb{N} \to \mathbb{N} \cup \{0\}.$
- b) $h: \mathbb{N} \cup \{0\} \to 2\mathbb{Z}.$
- c) $g: \mathbb{Z} \to 2\mathbb{Z}$.
- d) $w : \mathbb{N} \to \mathbb{Z}$.
- e) between all possible permutations of the numbers $\{1, 2, 3, 4\}$ and a subset of \mathbb{N} .

We are now able to compare infinite sets via bijections or one-to-one correspondences. We define:

Definition 6 Let A be an arbitrary set.

- a) The set A is finite, if there is a bijective map $f: A \to \{1, 2, 3, ..., n\}$ for some positive integer n.
- b) The set A is **infinite**, if it is not finite.
- c) The set A is **countably infinite**, if there is a bijective map $f: A \to \mathbb{N}$.
- d) The set A is **countable**, if it is either finite or countably infinite.
- e) The set A is **uncountable**, if it is not countable.

Wednesday 01/17/18

Example: Categorize the examples from **Example 5**. What about \mathbb{Q} and \mathbb{R} ?

Theorem 7 A subset of a countably infinite set is countable.

proof: