Math 35: Real Analysis
 Winter 2018

Wednesday $01 / 17 / 18$

Lecture 6

Last time:

Lemma 4 The following statements are equivalent:

1. If $a, b>0$ then there is a positive integer $n \in \mathbb{N}$, such that $n a>b$.
2. The set \mathbb{N} of positive integers is not bounded above.
3. For each $x \in \mathbb{R}$ there is an integer $n \in \mathbb{Z}$, such that $n \leq x<n+1$.
4. For each $x \in \mathbb{R}^{+}$there is a positive integer $n \in \mathbb{N}$, such that $\frac{1}{n}<x$.

Example: Show that $\inf (S)=0$ for $S=\left\{\frac{1}{n}, n \in \mathbb{N}\right\}$.

Theorem 5 For all $x, y \in \mathbb{R}, x<y$ there is $q \in \mathbb{Q}$ and $r \in \mathbb{R} \backslash \mathbb{Q}$, such that

$$
x<q<y \quad \text { and } \quad x<r<y .
$$

proof:

Math 35: Real Analysis
 Winter 2018

Chapter 1.6-Countable and uncountable sets

Aim: \mathbb{Q} and \mathbb{R} are infinite, but \mathbb{R} is "more" infinite.
To compare infinte sets, we can not just use counting arguments. We compare them by showing that there is a map that is one-to-one correspondence or bijective.

Definition 1 Let A and B be sets. A function $f: A \rightarrow B$ is a map that assigns to each element of a exactly one element $f(a)=b$.

Figure:

Definition 2 A function $f: A \rightarrow B$ is called
a) injective if for all $b \in B$ there is at most one element $a \in A$, such that $f(a)=b$. This is equivalent to the statement: $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=a_{2}$.
b) surjective if for all $b \in B$ there is an element $a \in A$, such that $f(a)=b$.

We can check for surjectivity by finding an element $a \in A$, such that $f(a)=b$.
c) bijective or in one-to-one correspondence if for all $b \in B$ there is exactly one element $a \in A$, such that $f(a)=b$.
Figure:

Note 3: A function $f: A \rightarrow B$ is bijective if and only if there is a function $g: B \rightarrow A$, such that

$$
f \circ g(b)=b \text { for all } b \in B \quad \text { and } g \circ f(a)=a \text { for all } a \in A \text {. }
$$

In this case we call $g=f^{-1}$ the inverse function of f.
Note 4: If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijective functions, then $g \circ f: A \rightarrow C$ is also a bijective function.
proofs: see book, Appendix B.2.

Math 35: Real Analysis
 Winter 2018

Example 5: Find a bijective function
a) $f: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$.
b) $h: \mathbb{N} \cup\{0\} \rightarrow 2 \mathbb{Z}$.
c) $g: \mathbb{Z} \rightarrow 2 \mathbb{Z}$.
d) $w: \mathbb{N} \rightarrow \mathbb{Z}$.
e) between all possible permutations of the numbers $\{1,2,3,4\}$ and a subset of \mathbb{N}.

We are now able to compare infinite sets via bijections or one-to-one correspondences. We define:

Definition 6 Let A be an arbitrary set.
a) The set A is finite, if there is a bijective map $f: A \rightarrow\{1,2,3, \ldots, n\}$ for some positive integer n.
b) The set A is infinite, if it is not finite.
c) The set A is countably infinite, if there is a bijective map $f: A \rightarrow \mathbb{N}$.
d) The set A is countable, if it is either finite or countably infinite.
e) The set A is uncountable, if it is not countable.

Math 35: Real Analysis
 Winter 2018

Wednesday $01 / 17 / 18$

Example: Categorize the examples from Example 5. What about \mathbb{Q} and \mathbb{R} ?

Theorem 7 A subset of a countably infinite set is countable. proof:

