# Math 35: Real Analysis <br> Winter 2018 

Tuesday $01 / 16 / 18$

## Lecture 5

Last time: Theorem 10 (Cauchy-Schwarz inequality) Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$ be two vectors. Then

$$
\begin{gathered}
|\mathbf{a} \bullet \mathbf{b}|^{2} \leq\|\mathbf{a}\|^{2} \cdot\|\mathbf{b}\|^{2}, \quad \text { where } \\
\mathbf{a} \bullet \mathbf{b}=\sum_{k=1}^{n} a_{k} \cdot b_{k} \quad \text { and } \quad\|\mathbf{a}\|=(\mathbf{a} \bullet \mathbf{a})^{\frac{1}{2}}=\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{\frac{1}{2}} .
\end{gathered}
$$

We conclude this chapter with the following corollary:
Corollary 11: $\left(\Delta \neq\right.$ in $\left.\mathbb{R}^{n}\right)$ Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$ be two vectors. Then

$$
\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\| .
$$

## Figure:

proof: We prove the equivalent statement which we obtain by squaring both sides:

$$
\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\| \Leftrightarrow(\|\mathbf{a}+\mathbf{b}\|)^{2} \leq(\|\mathbf{a}\|+\|\mathbf{b}\|)^{2} .
$$

We rewrite the left-hand side of the equation using the dot product. Then we use the linearity of the dot product:

# Math 35: Real Analysis <br> Winter 2018 

## Chapter 1.5-Completeness Axiom

Aim: $\mathbb{Q}$ is incomplete, as it misses numbers like $\sqrt{2}$ or $\pi$. We can fix this defect by adding suprema.

We start with the definition of bounded sets:
Definition 1 Let $S$ be a non-empty set of real numbers then
a) the set $S$ is bounded above if there is an $M \in \mathbb{R}$, such that

$$
x \leq M \text { for all } x \in S
$$

In this case $M$ is called an upper bound of $S$.
b) the set $S$ is bounded below if there is an $m \in \mathbb{R}$, such that

$$
m \leq x \text { for all } x \in S
$$

In this case $m$ is called a lower bound of $S$.
c) the set $S$ is bounded if there is an $M_{a} \in \mathbb{R}$, such that

$$
|x| \leq M_{a} \text { for all } x \in S .
$$

In this case $M_{a}$ is called a bound of $S$.
Examples: - Find a set $S$ that has an upper bound, but no lower bound.

- What can you say about the set $-S=\{-x, x \in S\}$ ?
- What is the greatest lower bound of the set $\tilde{S}:=\left\{\frac{1}{n}, n \in \mathbb{N}\right\}$.


# Math 35: Real Analysis <br> Winter 2018 

Definition 2 (Supremum and Infimum) Let $S$ be a non-empty set of real numbers.
a) If the set $S$ is bounded above then a number $\beta$ is the supremum of $S$ or shortly $\beta=\sup (S)$ if $\beta$ is an upper bound of $S$,i.e.

$$
x \leq \beta \text { for all } x \in S .
$$

and for any number $b<\beta$ we have that $b$ is not an upper bound of $S$.
This means that for all $b<\beta$ there is an $x \in S$, such that $b<x$.
The supremum is also called the least upper bound.
b) If the set $S$ is bounded below then a number $\alpha$ is the infimum of $S$ or shortly $\alpha=\inf (S)$ if $\alpha$ is a lower bound of $S$,i.e.

$$
x \geq \alpha \text { for all } x \in S
$$

and for any number $a>\alpha$ we have that $a$ is not a lower bound of $S$. This means that for all $a>\alpha$ there is an $x \in S$, such that $x<a$. The infimum is also called the greatest lower bound.

Example: - Find $\sup \left\{x \in \mathbb{Q}, x^{2}<2\right\}$ :

We add the final axiom for the real numbers:
Completeness Axiom: Each non-empty set $S \subset \mathbb{R}$ of real numbers that is bounded above has a supremum $\sup (S)$.

A consequence is the Archimedean property of the real numbers:
Theorem 3 (Archimedean property of the real numbers) For all $a, b \in \mathbb{R}^{+}$there is $n \in \mathbb{N}$, such that

$$
a \cdot n>b .
$$

## Figure:

## proof:

## Math 35: Real Analysis <br> Winter 2018

We have the following lemma:
Lemma 4 The following statements are equivalent:

1. If $a, b>0$ then there is a positive integer $n \in \mathbb{N}$, such that $n a>b$.
2. The set $\mathbb{N}$ of positive integers is not bounded above.
3. For each $x \in \mathbb{R}$ there is an integer $n \in \mathbb{Z}$, such that $n \leq x<n+1$.
4. For each $x \in \mathbb{R}^{+}$there is a positive integer $n \in \mathbb{N}$, such that $\frac{1}{n}<x$. proof: Only $1 . \Leftrightarrow 4$.:
