Math 35: Real Analysis
 Winter 2018

Wednesday $01 / 10 / 18$

Lecture 4

Organization:

- HW 1 due today outside KH 008 at 2 pm
- Next lecture Tuesday, 01/16/18 from 12:15-1:05 pm

Last time: $S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\} \subset \mathbb{R}\left(a_{i} \geq 0\right.$ for all $\left.i\right)$ then

$$
A M(S)=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \text { and } G M(S)=\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}\right)^{\frac{1}{n}}
$$

denotes the arithmetic and geometric mean of S, respectively.

Aim: Prove that $A M(S) \geq G M(S)$.

We have the following lemma:
Lemma 8: Let $n \geq 2$ be an integer. Suppose that $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ are positive real numbers that are not all equal. We have:

$$
\text { If } b_{1} \cdot b_{2} \cdot \ldots \cdot b_{n}=1 \text {, then } b_{1}+b_{2}+\ldots+b_{n}>n
$$

proof: By induction:
1.) Induction start $(n=2)$: We know that $b_{1} \neq b_{2}$ and $b_{1} \cdot b_{2}=1$. Then

$$
0<\left(\left(b_{1}\right)^{\frac{1}{2}}-\left(b_{2}\right)^{\frac{1}{2}}\right)^{2}=b_{1}-2\left(b_{1} \cdot b_{2}\right)^{\frac{1}{2}}+b_{2}=b_{1}-2+b_{2} .
$$

This implies that $2<b_{1}+b_{2}$. Hence our statement is true for $n=2$.
2.) Induction step $(n \rightarrow n+1)$: We have to show that if the statement is true for n numbers, i.e.:

If $b_{1} \cdot b_{2} \cdot \ldots \cdot b_{n}=1$, then $b_{1}+b_{2}+\ldots+b_{n}>n \quad$ (Induction hypothesis)
then it is also true for $n+1$ numbers.
So we assume that (*) is true and we know that

$$
b_{1} \cdot b_{2} \cdot \ldots \cdot b_{n} \cdot b_{n+1}=1
$$

Math 35: Real Analysis Winter 2018

We have to show that $b_{1}+b_{2}+\ldots+b_{n}+b_{n+1}>n+1$.
As the numbers are not all equal we know that $b_{1}<1<b_{n+1}$, as their product is equal to one. Set $B_{1}=b_{1} \cdot b_{n+1}$ then

$$
B_{1} \cdot b_{2} \cdot \ldots \cdot b_{n}=1
$$

Hence we can use our induction hypothesis (*) and obtain

$$
\begin{equation*}
B_{1}+b_{2}+\ldots+b_{n} \geq n \text { or } b_{1} \cdot b_{n+1}+b_{2}+\ldots+b_{n} \geq n \tag{**}
\end{equation*}
$$

Now we look at the product

$$
\begin{equation*}
A=\left(b_{n+1}-1\right) \cdot\left(1-b_{1}\right)=b_{1}+b_{n+1}-b_{1} \cdot b_{n+1}-1 \tag{***}
\end{equation*}
$$

where $A>0$ as $b_{1}<1<b_{n+1}$.

$$
\begin{aligned}
b_{1}+b_{2}+\ldots+b_{n}+b_{n+1} & =b_{1} \frac{-b_{1} \cdot b_{n+1}+b_{1} \cdot b_{n+1}+b_{2}+\ldots+b_{n}+b_{n+1}}{} \\
& =\left(b_{1} \cdot b_{n+1}+b_{2}+\ldots+b_{n}\right)+\left(b_{n+1}+b_{1}-b_{1} \cdot b_{n+1}-1\right)+1 \\
& \stackrel{(* *)(* * *)}{\geq} n+A+1>n+1 .
\end{aligned}
$$

This proves our statement.

Theorem 9 (AM-GM inequality) $S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\} \subset \mathbb{R}\left(a_{i} \geq 0\right.$ for all $\left.i\right)$ set of non-negative real numbers then

$$
G M(S)=\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}\right)^{\frac{1}{n}} \leq \frac{a_{1}+a_{2}+\ldots+a_{n}}{n}=A M(S) .
$$

Furthermore equality holds if and only if $a_{1}=a_{2}=\ldots=a_{n}$.
proof Clearly equality occurs if all numbers are equal and the inequality is trivial if one of the a_{k} is equal to zero. So we assume that the a_{k} are not all equal and set $r=G M(S)$. Then

$$
\frac{a_{1}}{r} \cdot \frac{a_{2}}{r} \cdot \ldots \cdot \frac{a_{n}}{r}=\frac{a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}}{r^{n}}=1 .
$$

Hence by the previous lemma we have that

$$
\frac{a_{1}}{r}+\frac{a_{2}}{r}+\ldots+\frac{a_{n}}{r}>n \text { hence } \frac{a_{1}+a_{2}+\ldots+a_{n}}{n}>r=G M(S) .
$$

This proves our theorem.

Math 35: Real Analysis
 Winter 2018

Example: (Solving a calculus problem without calculus). Among all rectangular boxes with fixed volume V, find the dimensions of the box whose surface area S is minimal and determine S in terms of V.
Solution: For a box with side-lengths x, y and z, we have that

$$
V=x y z \quad \text { and } \quad S=2 x y+2 x z+2 y z .
$$

We know that by Theorem 9 with $a_{1}=2 x y, a_{2}=2 x z, a_{3}=2 y z$:

$$
(8 \cdot(x y \cdot x z \cdot y z))^{\frac{1}{3}} \leq \frac{S}{3} \text { hence } \quad 6 \cdot V^{\frac{2}{3}} \leq S
$$

Furthermore equality occurs if and only if $x y=x z=y z$ or $x=y=z$. Hence for fixed volume the box with minimal surface area has area $6 \cdot V^{\frac{2}{3}}$. It is the box with equal sides.

Note: This problem can, for example, be solved using Lagrange-multipliers and the solution is very lengthy. With Theorem 9 the proof reduces to two lines.

Theorem 10 (Cauchy-Schwarz inequality) Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots a_{n}\right) \in \mathbb{R}^{n}$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots b_{n}\right) \in$ \mathbb{R}^{n} be two vectors. Then

$$
\begin{array}{cl}
|\mathbf{a} \bullet \mathbf{b}|^{2} \leq\|\mathbf{a}\|^{2} \cdot\|\mathbf{b}\|^{2}, & \text { where } \\
\mathbf{a} \bullet \mathbf{b}=\sum_{k=1}^{n} a_{k} \cdot b_{k} \quad \text { and } \quad\|\mathbf{a}\|=(\mathbf{a} \bullet \mathbf{a})^{\frac{1}{2}}=\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{\frac{1}{2}}
\end{array}
$$

proof By Theorem 9 we have for all $k \in\{1,2, \ldots, n\}$:

$$
\frac{1}{2} \cdot\left(\frac{a_{k}^{2}}{\|\mathbf{a}\|^{2}}+\frac{b_{k}^{2}}{\|\mathbf{b}\|^{2}}\right) \geq\left(\frac{a_{k}^{2}}{\|\mathbf{a}\|^{2}} \cdot \frac{b_{k}^{2}}{\|\mathbf{b}\|^{2}}\right)^{\frac{1}{2}}=\frac{\left|a_{k}\right|}{\|\mathbf{a}\|} \cdot \frac{\left|b_{k}\right|}{\|\mathbf{b}\|}
$$

Summing up over all k this implies

$$
\sum_{k=1}^{n} \frac{\left|a_{k}\right|}{\|\mathbf{a}\|} \cdot \frac{\left|b_{k}\right|}{\|\mathbf{b}\|} \leq \sum_{k=1}^{n} \frac{1}{2} \cdot\left(\frac{a_{k}^{2}}{\|\mathbf{a}\|^{2}}+\frac{b_{k}^{2}}{\|\mathbf{b}\|^{2}}\right)=\frac{1}{2}(\underbrace{\sum_{k=1}^{n} \frac{a_{k}^{2}}{\|\mathbf{a}\|^{2}}}_{=1}+\underbrace{\sum_{k=1}^{n} \frac{b_{k}^{2}}{\|\mathbf{b}\|^{2}}}_{=1})=1 .
$$

Hence

$$
\left|\sum_{k=1}^{n} a_{k} \cdot b_{k}\right| \stackrel{H W 2}{\leq} \sum_{k=1}^{n}\left|a_{k}\right| \cdot\left|b_{k}\right| \leq\|\mathbf{a}\| \cdot\|\mathbf{b}\| .
$$

The Cauchy-Schwarz inequality follows by squaring both sides, as $f(x)=x^{2}$ is an increasing function on \mathbb{R}^{+}, i.e. $x \leq y \Rightarrow x^{2} \leq y^{2}$ for all $x, y \in \mathbb{R}^{+}$.

