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Lecture 26

Aim: We prove the integration laws. We close this chapter with an outlook on Fourier series.

Theorem 5 (Integration by substitution) Let g : [a, b]→ [c, d] be di�erentiable on [a, b]
and g′ continuous on [a, b]. Let f : [c, d]→ R be a continuous function. Then∫ b

a
f(g(x)) · g′(x) dx =

∫ g(b)

g(a)
f(t) dt.

proof Idea: This is a consequence of the chain rule. Let F : [c, d] → R be a primitive of f i.e
F ′ = f . Then by the Chain rule of di�erentiation we have

(F ◦ g)′(x) = F ((g(x))′ = F ′(g(x)) · g′(x) = f(g(x)) · g′(x).

Integrating both sides of the above equation we obtain by Theorem 4∫ b

a
f(g(x)) · g′(x) dx =

∫ b

a
(F ◦ g)′(x) dx = F (g(x))

∣∣∣b
a
= F (g(b))− F (g(a)) Th.4=

∫ g(b)

g(a)
f(t) dt.

This proves our statement.

Examples Using integration by substitution calculate the integrals

a)

∫ b

a

g′(x)

g(x)
dx (for g > 0) b)

∫ b

0
tan(x) dx =

∫ b

0

sin(x)

cos(x)
dx where b <

π

2
.
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Theorem 6 (Integration by parts) Let f, g : [a, b] → R be di�erentiable on [a, b] and
f ′, g′ continuous on [a, b]. Then∫ b

a
f ′(x) · g(x) dx = f(x) · g(x)

∣∣∣b
a
−
∫ b

a
f(x) · g′(x) dx.

proof Idea: This is a consequence of the product rule. By the product rule of di�erentiation
we have for f · g.

(f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x).

Integrating both sides on [a, b] we obtain by Theorem 4

f(x) · g(x)
∣∣∣b
a
=

∫ b

a
(f(x) · g(x))′ dx =

∫ b

a
f ′(x) · g(x) dx+

∫ b

a
f(x) · g′(x) dx.

Our theorem then follows from this equation.

Example Calculate
∫ b
a sin

2(x) dx with the help of Theorem 6.∫ b

a
sin2(x) dx =

∫ b

a
(− cos(x))′ · sin(x) = − cos(x) · sin(x)

∣∣∣b
a
+

∫ b

a
cos(x) · cos(x) dx∫ b

a
cos(x) · cos(x) dx =

∫ b

a
1− sin2(x) dx =

∫ b

a
1 dx−

∫ b

a
sin2(x) dx = x

∣∣∣b
a
−
∫ b

a
sin2(x) dx hence

2

∫ b

a
sin2(x) dx = x− cos(x) · sin(x)

∣∣∣b
a

or

∫ b

a
sin2(x) dx =

x− cos(x) · sin(x)
2

∣∣∣b
a
.

Hence a primitive of sin2(x) is x−cos(x)·sin(x)
2 .

As an application of the Theorem 6 we want to show the expression for the Sawtooth func-

tion:

∞∑
k=1

sin(kx)

k
=
π − x
2

for all x ∈ (0, 2π). (1)

This is an example of a Fourier series. A Fourier series is an expression of a function f as an
in�nite sum of sine and cosine functions. We �rst show the following theorem.
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Theorem 7 Let g : [a, b] → R be di�erentiable on [a, b] and g′ continuous on [a, b]. For
k ∈ R we set

F (k) =

∫ b

a
g(x) sin(kx) dx. Then lim

|k|→∞
F (k) = 0.

Figure: If we let sin oscillate faster and faster, then the positive and negative parts annihilate
each other when we integrate.

proof Using integration by parts with f ′(x) = sin(kx) we obtain

F (k) =

∫ b

a
g(x) sin(kx) dx = −cos(kx)

k
· g(x)

∣∣∣b
a
+

∫ b

a
g′(x)

cos(kx)

k
dx. (*)

As both g and g′ are continuous on [a, b] they attain their max and min on [a, b] and are bounded.
Hence there is a constant M , such that

|g(x)| ≤M and |g′(x)| ≤M for all x ∈ [a, b]

As | cos(kx)| ≤ 1 we get from (*) the estimate

|F (k)| ≤ 1

|k|
· (2M +M · (b− a))

Hence lim|k|→∞ |F (k)| = 0 which implies our statement.

Lemma 8 (A trigonometric formula) If t ∈ R is not a multiple of 2π. Then for any
n ∈ N we have

n∑
k=1

cos(kt) =
sin
(
(n+ 1

2) · t
)

2 sin
(
t
2

) − 1

2
.

proof see Resources.
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proof of (1) We can now prove that
∑∞

k=1
sin(kx)
k = π−x

2 . (see Figure 1)

1.) We �rst note that sin(kx)
k is a primitive of cos(kx), especially, as sin(kπ) = 0 we have

sin(kx)

k
=

∫ x

π
cos(kt) dt. (**)

Together with Lemma 8 we obtain for n ∈ N
n∑
k=1

sin(kx)

k

(∗∗)
=

n∑
k=1

∫ x

π
cos(kt) dt =

∫ x

π

n∑
k=1

cos(kt) dt
Lemma 8

=

∫ x

π

sin
(
(n+ 1

2) · t
)

2 sin
(
t
2

) − 1

2
dt

=

∫ x

π

1

2 sin
(
t
2

)︸ ︷︷ ︸
=g(x) in Th.7

· sin( (n+
1

2
)︸ ︷︷ ︸

=k in Th.7

·t) dt−
∫ x

π

1

2
dt = Fx

(
n+

1

2

)
+
π − x
2

.

2.) For any x ∈ (0, 2π) we can now applyTheorem 7 to Fx(n+
1
2) =

∫ x
π

1
2 sin( t2)

·sin
(
(n+ 1

2) · t
)
dt

and obtain

lim
n→∞

n∑
k=1

sin(kx)

k
= lim

n→∞
Fx

(
n+

1

2

)
︸ ︷︷ ︸

=0 byTh. 7

+ lim
n→∞

π − x
2

=
π − x
2

.

This proves our statement.

Corollary 9 For x = π
2 we obtain the formula

∑∞
k=1

sin(k·π
2
)

k =

∞∑
k=0

(−1)k

2k + 1
=
π

4
.

Figure 1: Plot of π−x2 (black) and the approximations with sine functions sin(x) (red), sin(x) +
sin(x)

2 (blue) and
∑5

k=1
sin(kx)
k (purple) for x ∈ (0, 2π) and neighboring intervals.


