Math 35: Real Analysis
 Winter 2018

Monday 03/05/18

Lecture 26

Aim: We prove the integration laws. We close this chapter with an outlook on Fourier series.

Theorem 5 (Integration by substitution) Let $g:[a, b] \rightarrow[c, d]$ be differentiable on $[a, b]$ and g^{\prime} continuous on $[a, b]$. Let $f:[c, d] \rightarrow \mathbb{R}$ be a continuous function. Then

$$
\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(t) d t .
$$

proof Idea: This is a consequence of the chain rule. Let $F:[c, d] \rightarrow \mathbb{R}$ be a primitive of f i.e $F^{\prime}=f$. Then by the Chain rule of differentiation we have

$$
(F \circ g)^{\prime}(x)=F\left((g(x))^{\prime}=F^{\prime}(g(x)) \cdot g^{\prime}(x)=f(g(x)) \cdot g^{\prime}(x) .\right.
$$

Integrating both sides of the above equation we obtain by Theorem 4

$$
\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x=\int_{a}^{b}(F \circ g)^{\prime}(x) d x=\left.F(g(x))\right|_{a} ^{b}=F(g(b))-F(g(a)) \stackrel{T h .4}{=} \int_{g(a)}^{g(b)} f(t) d t
$$

This proves our statement.
Examples Using integration by substitution calculate the integrals
a) $\int_{a}^{b} \frac{g^{\prime}(x)}{g(x)} d x \quad($ for $g>0)$
b) $\int_{0}^{b} \tan (x) d x=\int_{0}^{b} \frac{\sin (x)}{\cos (x)} d x$ where $b<\frac{\pi}{2}$.

Math 35: Real Analysis
 Winter 2018

Theorem 6 (Integration by parts) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$ and f^{\prime}, g^{\prime} continuous on $[a, b]$. Then

$$
\int_{a}^{b} f^{\prime}(x) \cdot g(x) d x=\left.f(x) \cdot g(x)\right|_{a} ^{b}-\int_{a}^{b} f(x) \cdot g^{\prime}(x) d x
$$

proof Idea: This is a consequence of the product rule. By the product rule of differentiation we have for $f \cdot g$.

$$
(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

Integrating both sides on $[a, b]$ we obtain by Theorem 4

$$
\left.f(x) \cdot g(x)\right|_{a} ^{b}=\int_{a}^{b}(f(x) \cdot g(x))^{\prime} d x=\int_{a}^{b} f^{\prime}(x) \cdot g(x) d x+\int_{a}^{b} f(x) \cdot g^{\prime}(x) d x
$$

Our theorem then follows from this equation.
Example Calculate $\int_{a}^{b} \sin ^{2}(x) d x$ with the help of Theorem 6.

$$
\begin{aligned}
\int_{a}^{b} \sin ^{2}(x) d x & =\int_{a}^{b}(-\cos (x))^{\prime} \cdot \sin (x)=-\left.\cos (x) \cdot \sin (x)\right|_{a} ^{b}+\int_{a}^{b} \cos (x) \cdot \cos (x) d x \\
\int_{a}^{b} \cos (x) \cdot \cos (x) d x & =\int_{a}^{b} 1-\sin ^{2}(x) d x=\int_{a}^{b} 1 d x-\int_{a}^{b} \sin ^{2}(x) d x=\left.x\right|_{a} ^{b}-\int_{a}^{b} \sin ^{2}(x) d x \text { hence } \\
2 \int_{a}^{b} \sin ^{2}(x) d x & =x-\left.\cos (x) \cdot \sin (x)\right|_{a} ^{b} \text { or } \int_{a}^{b} \sin ^{2}(x) d x=\left.\frac{x-\cos (x) \cdot \sin (x)}{2}\right|_{a} ^{b} .
\end{aligned}
$$

Hence a primitive of $\sin ^{2}(x)$ is $\frac{x-\cos (x) \cdot \sin (x)}{2}$.
As an application of the Theorem $\mathbf{6}$ we want to show the expression for the Sawtooth function:

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\sin (k x)}{k}=\frac{\pi-x}{2} \quad \text { for all } x \in(0,2 \pi) . \tag{1}
\end{equation*}
$$

This is an example of a Fourier series. A Fourier series is an expression of a function f as an infinite sum of sine and cosine functions. We first show the following theorem.

Math 35: Real Analysis
 Winter 2018

Theorem 7 Let $g:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$ and g^{\prime} continuous on $[a, b]$. For $k \in \mathbb{R}$ we set

$$
F(k)=\int_{a}^{b} g(x) \sin (k x) d x . \quad \text { Then } \quad \lim _{|k| \rightarrow \infty} F(k)=0 .
$$

Figure: If we let sin oscillate faster and faster, then the positive and negative parts annihilate each other when we integrate.
proof Using integration by parts with $f^{\prime}(x)=\sin (k x)$ we obtain

$$
\begin{equation*}
F(k)=\int_{a}^{b} g(x) \sin (k x) d x=-\left.\frac{\cos (k x)}{k} \cdot g(x)\right|_{a} ^{b}+\int_{a}^{b} g^{\prime}(x) \frac{\cos (k x)}{k} d x \tag{}
\end{equation*}
$$

As both g and g^{\prime} are continuous on $[a, b]$ they attain their max and min on $[a, b]$ and are bounded. Hence there is a constant M, such that

$$
|g(x)| \leq M \quad \text { and } \quad\left|g^{\prime}(x)\right| \leq M \quad \text { for all } \quad x \in[a, b]
$$

As $|\cos (k x)| \leq 1$ we get from $\left(^{*}\right)$ the estimate

$$
|F(k)| \leq \frac{1}{|k|} \cdot(2 M+M \cdot(b-a))
$$

Hence $\lim _{|k| \rightarrow \infty}|F(k)|=0$ which implies our statement.

Lemma 8 (A trigonometric formula) If $t \in \mathbb{R}$ is not a multiple of 2π. Then for any $n \in \mathbb{N}$ we have

$$
\sum_{k=1}^{n} \cos (k t)=\frac{\sin \left(\left(n+\frac{1}{2}\right) \cdot t\right)}{2 \sin \left(\frac{t}{2}\right)}-\frac{1}{2}
$$

proof see Resources.

Math 35: Real Analysis Winter 2018

proof of (1) We can now prove that $\sum_{k=1}^{\infty} \frac{\sin (k x)}{k}=\frac{\pi-x}{2}$. (see Figure 1)
1.) We first note that $\frac{\sin (k x)}{k}$ is a primitive of $\cos (k x)$, especially, as $\sin (k \pi)=0$ we have

$$
\begin{equation*}
\frac{\sin (k x)}{k}=\int_{\pi}^{x} \cos (k t) d t \tag{**}
\end{equation*}
$$

Together with Lemma 8 we obtain for $n \in \mathbb{N}$

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{\sin (k x)}{k} \stackrel{(* *)}{=} \sum_{k=1}^{n} \int_{\pi}^{x} \cos (k t) d t=\int_{\pi}^{x} \sum_{k=1}^{n} \cos (k t) d t \stackrel{\text { Lemma } 8}{=} \int_{\pi}^{x} \frac{\sin \left(\left(n+\frac{1}{2}\right) \cdot t\right)}{2 \sin \left(\frac{t}{2}\right)}-\frac{1}{2} d t \\
&=\int_{\pi}^{x} \underbrace{\frac{1}{2 \sin \left(\frac{t}{2}\right)}}_{=g(x) \text { in } \mathbf{T h} \mathbf{7} \mathbf{7}} \cdot \sin (\underbrace{\left(n+\frac{1}{2}\right)}_{=k \text { in } \mathbf{T h} \mathbf{7} \mathbf{7}} \cdot t) d t-\int_{\pi}^{x} \frac{1}{2} d t=F_{x}\left(n+\frac{1}{2}\right)+\frac{\pi-x}{2}
\end{aligned}
$$

2.) For any $x \in(0,2 \pi)$ we can now apply Theorem 7 to $F_{x}\left(n+\frac{1}{2}\right)=\int_{\pi}^{x} \frac{1}{2 \sin \left(\frac{t}{2}\right)} \cdot \sin \left(\left(n+\frac{1}{2}\right) \cdot t\right) d t$ and obtain

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\sin (k x)}{k}=\underbrace{\lim _{n \rightarrow \infty} F_{x}\left(n+\frac{1}{2}\right)}_{=0 \text { by Th. } \mathbf{7}}+\lim _{n \rightarrow \infty} \frac{\pi-x}{2}=\frac{\pi-x}{2} .
$$

This proves our statement.
Corollary 9 For $x=\frac{\pi}{2}$ we obtain the formula $\sum_{k=1}^{\infty} \frac{\sin \left(k \cdot \frac{\pi}{2}\right)}{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}=\frac{\pi}{4}$.

Figure 1: Plot of $\frac{\pi-x}{2}$ (black) and the approximations with sine functions $\sin (x)$ (red), $\sin (x)+$ $\frac{\sin (x)}{2}$ (blue) and $\sum_{k=1}^{5} \frac{\sin (k x)}{k}$ (purple) for $x \in(0,2 \pi)$ and neighboring intervals.

