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Lecture 25

For g(x) = 1 for all x ∈ [a, b] in Theorem 10 we get:

Corollary 11 Let f : [a, b]→ R be a continuous function. Then there is c ∈ (a, b), such that∫ b

a
f(x) dx = f(c) · (b− a).

It is not hard to prove that

Theorem 12 Let f : [a, b]→ R be a function and c ∈ (a, b). Then f is integrable on [a, b] if
and and only if f is integrable on [a, c] and [c, b]. In this case we have∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

proof exercise.

For completeness we de�ne

De�nition 13 Let f : [a, b]→ R be an integrable function c ∈ (a, b). Then we set∫ c

c
f(x) dx = 0 and

∫ a

b
f(x) dx = −

∫ b

a
f(x) dx
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Chapter 5.3 - Fundamental theorem of calculus

Aim: We prove the Fundamental theorem of calculus (FTC) and then the integration
rules. This important theorem is due to Isaac Barrow (1674), Isaac Newton and Gottfried Leibniz.

The FTC can be proven using the Mean value theorem of integration. To this end we
�rst consider one of the integration boundaries as a variable.

Theorem 1 (Fundamental theorem of calculus) Let f : [a, b]→ R be a continuous function
and x ∈ [a, b]. Let F : [a, b]→ R be the function de�ned by

F (x) :=

∫ x

a
f(t) dt. Then F is di�erentiable and F ′(x) = f(x) for all x ∈ [a, b].

Figure We interpret the di�erence quotient of F in terms of the area under the function f .

proof Idea: We look at the di�erence quotient for F and then use theMVT of integration.
We know that for �xed h 6= 0 (h < 0 possible)

F (x+ h)− F (x)
h

=
1

h
·
∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt =

1

h
·
∫ x+h

x
f(t) dt. (*)

By the MVT of integration there is ch between x and x+h, such that
∫ x+h
x f(t) dt = h ·f(ch).

Using this fact and taking the limit in (*) we obtain

F ′(x) = lim
h→0

F (x+ h)− F (x)
h

= lim
h→0

1

h

∫ x+h

x
f(t) dt = lim

h→0

h

h
f(ch) = lim

h→0
f(ch) = f(x).

This is true as ch lies between x and x+ h. Hence F is di�erentiable with F ′ = f .
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De�nition 2 (Primitives) A di�erentiable function F : [a, b] → R is called a primitive

of a function f : [a, b]→ R if F ′(x) = f(x) for all x ∈ R.

Theorem 3 Let F : [a, b]→ R be a primitive of f : [a, b]→ R. Then G is another primitive
of f if and only if

G = F + c for some constant c ∈ R .

proof ”⇒ ” If G is another primitive of f then

(F −G)′ = f − f = 0 hence F −G = c for some c ∈ R .

This follows from Lecture 21, Theorem 7c).

”⇐ ” If G = F + c then G′ = F ′ = f . Hence G is also a primitive of f .

Theorem 4 Let f : [a, b]→ R be a continuous function and F be a primitive of f . Then∫ b

a
f(t) dt = F (b)− F (a).

proof Idea: We use Theorem 3. We compare the "standard" primitive G(x) =
∫ x
a f(t) dt with

F . We know

G(b) =

∫ b

a
f(t) dt and G(a) =

∫ a

a
f(t) dt = 0.

Furthermore F (x) = G(x) + c for all x ∈ R. Hence

F (b)− F (a) = (G(b) + c)− (G(a) + c) = G(b)−G(a) = G(b) =

∫ b

a
f(t) dt.

Example: For k ∈ Z, �nd a primitive of sin(kx) and calculate
∫ π
0 sin(kt) dt.

Solution: We know that F (x) = − cos(kx)
k is a primitive of sin(kx) as F ′(x) = sin(kx). Hence

by Theorem 4 we have∫ π

0
sin(kt) dt = −cos(kx)

k

∣∣∣π
0
=
− cos(kπ) + 1

k
=

{
0
2
k

if
k even
k odd .


