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Lecture 24

Theorem 6 A bounded function f : [a, b] → R is integrable if and only if for every ε > 0
there are step functions TUε = TU , TL,ε = TL ∈ T ([a, b]), such that

TL ≤ f ≤ TU and

∫ b

a
TU (x) dx−

∫ b

a
TL(x) dx ≤ ε.

Especially for the given step functions we have by the de�nition of the integral

|
∫ b

a
TU (x) dx−

∫ b

a
f(x) dx| ≤ ε and |

∫ b

a
f(x) dx−

∫ b

a
TL(x) dx| < ε.

proof This follows directly from the de�nition.

Theorem 7 (continuous functions are integrable) Let f : [a, b] → R be a continuous
function. Then f is integrable on the interval [a, b].

Figure Example for Theorem 7. Take an equidistant partition.

proof Idea: A continuous function on [a, b] is uniformly continuous. The idea is to use The-
orem 6 and construct explicit step functions that appproximate f .

Fix ε > 0. By Lecture 19, Theorem 4 we know that f is uniformly continuous. Hence
for the given ε there is δ(ε) = δ, such that for all x, x̃ ∈ [a, b]

|x− x̃| < δ ⇒ |f(x)− f(x̃| < ε. (*)

We now construct our step functions:
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1.) Partition P : We �rst choose a partition. In this case it is practical to choose an
equidistant partition P = {(tk)k=0,..,n}.

For
b− a
n

< δ, set tk = a+ k · b− a
n

. Hence ∆tk = ‖P‖ =
b− a
n

< δ. (**)

2.) Upper and lower step functions fU and fL: We set

Mk = max{f(x), x ∈ [tk, tk+1]} and fU (x) = Mk for all x ∈ (tk, tk+1)

mk = min{f(x), x ∈ [tk, tk+1]} and fL(x) = mk for all x ∈ (tk, tk+1).

By the Extreme value theorem we know that

Mk = f(ξk) and mk = f(ξ̃k) for some ξk, ξ̃k ∈ [tk, tk+1] hence by (*),(**)

|ξk − ξ̃k| ≤
b− a
n

< δ ⇒ |f(ξk)− f(ξ̃k)| = Mk −mk < ε.

Clearly for the step functions we have fL ≤ f ≤ fU . For the di�erence of the integrals we get∫ b

a
fU (x) dx−

∫ b

a
fL(x) =

n−1∑
k=0

Mk ·∆tk −
n−1∑
k=0

mk ·∆tk =
n−1∑
k=0

(Mk −mk)︸ ︷︷ ︸
<ε(∗),(∗∗)

· ∆tk︸︷︷︸
= b−a

n

< ε · (b− a).

As ε was chosen arbitrarily this is true for any ε. Hence f is integrable by Theorem 6. �

Theorem 8 (Linearity and monotonicity of the integral for functions)

Let f, g : [a, b]→ R be two integrable functions then

a)
∫ b
a f(x) + g(x) dx =

∫ b
a f(x) dx+

∫ b
a g(x) dx.

b) For c ∈ R we have that
∫ b
a c · f(x) dx = c ·

∫ b
a f(x) dx.

c) If f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a f(x) dx ≤

∫ b
a g(x) dx.

proof Idea: This follows from the corresponding theorem for step functions Lecture 23, The-
orem 9 and the fact that any integrable function can be "approximated" by step functions.

Example: a) By Theorem 6 we know that for �xed ε > 0 there exist step functions
fUε = fU , fL,ε = fL, g

U
ε = gU , gL,ε = gL ∈ T ([a, b]), satisfying

fL ≤ f ≤ fU and gL ≤ g ≤ gU s.th.

∫ b

a
fU (x)−fL(x) dx <

ε

2
and

∫ b

a
gU (x)−gL(x) dx <

ε

2

Hence

fL + gL ≤ f + g ≤ fU + gU and

∫ b

a
(fU (x)− fL(x))− (gU (x)− gL(x)) dx < ε.

As ε was chosen arbitrarily this means that f + g is integrable and part a) holds.
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Example: Calculate
∫ 1
0 x

2 dx using the approach from Theorem 7 by dividing the interval
into n equidistant subinterval and calculating the upper and lower step function. Recall that∑n

k=0 k
2 = n(n+1)(2n+1)

6 :

Solution: We calculate the lower bound. For �xed n we have the partition P = (xk)k=0,..,n

of [0, 1] such that xk =
k

n
. The intervals are ( kn ,

k+1
n ) and we have ‖P‖ = ∆xk =

1

n
.

As f(x) = x2 is an increasing function on the interval [0, 1] we know that the minimal value in
each subinterval is the left endpoint. Hence for our step function fL = fL,P

fL(x) = f

(
k

n

)
=

(
k

n

)2

for all x ∈
(
k

n
,
k + 1

n

)
.

Integrating fL we obtain:∫ 1

0
fL(x) dx =

n−1∑
k=0

f

(
k

n

)
∆xk =

n−1∑
k=0

(
k

n

)2

· 1

n
=

1

n3
·
n−1∑
k=0

k2 =
1

n3
· (n− 1) · n · (2n− 1)

6
.

Taking the limit n→∞ we obtain:

lim
n→∞

1

n3
· (n− 1) · n · (2n− 1)

6
= lim

n→∞

2n2 − 3n+ 1

6n2
=

2

6
=

1

3
.

Note: It follows from the proof of Theorem 7 that the limit n→∞ must exist. In fact this is
still true if we take any point ck ∈ (xk, xk+1) instead of the minimum to construct a step function
T such that T (x) = f(ck) on (xk, xk+1) and take �ner and �ner partitions.

Theorem 9 (Cauchy-Schwarz inequality for integration)

Let f, g : [a, b]→ R be two continuous functions. Then f2 and g2 are continuous functions and
we have

|
∫ b

a
f(x)g(x) dx|2 ≤

(∫ b

a
f2(x) dx

)
·
(∫ b

a
g2(x) dx

)
proof exercise
Hint: The proof of Theorem 7 shows that we can �nd approximating lower and upper step
functions for f and g on an equidistant partition.
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Theorem 10 (Mean value theorem of integration) Let f, g : [a, b]→ R be two contin-
uous functions, such that g(x) ≥ 0 for all x ∈ [a, b]. Then there is c ∈ (a, b), such that∫ b

a
f(x)g(x) dx = f(c) ·

∫ b

a
g(x) dx.

proof We set

m = min{f(x), x ∈ [a, b]} = f(u) and M = max{f(x), x ∈ [a, b]} = f(v).

Then as g ≥ 0 we know that m · g ≤ f · g ≤M · g and by Theorem 8 b,c) we have

m︸︷︷︸
=f(u)

·
∫ b

a
g(x) dx ≤

∫ b

a
f(x)g(x) dx ≤ M︸︷︷︸

=f(v)

·
∫ b

a
g(x) dx.

If
∫ b
a g(x) dx = 0 then it follows from this inequality that

∫ b
a f(x)g(x) = 0 and our statement is

true. If
∫ b
a g(x) dx

g≥0
> 0 then we can divide the inequality by this value and obtain

f(u) ≤
∫ b
a f(x)g(x) dx∫ b
a g(x) dx

≤ f(v).

By the Mean value theorem there is a c ∈ [a, b], such that

f(c) =

∫ b
a f(x)g(x) dx∫ b
a g(x) dx

⇒ f(c) ·
∫ b

a
g(x) dx =

∫ b

a
f(x)g(x) dx.

and again our statement is true.


