Math 35: Real Analysis
 Winter 2018

Wednesday $02 / 28 / 18$

Lecture 24

Theorem 6 A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable if and only if for every $\epsilon>0$ there are step functions $T_{\epsilon}^{U}=T^{U}, T_{L, \epsilon}=T_{L} \in T([a, b])$, such that

$$
T_{L} \leq f \leq T^{U} \quad \text { and } \quad \int_{a}^{b} T^{U}(x) d x-\int_{a}^{b} T_{L}(x) d x \leq \epsilon
$$

Especially for the given step functions we have by the definition of the integral

$$
\left|\int_{a}^{b} T^{U}(x) d x-\int_{a}^{b} f(x) d x\right| \leq \epsilon \text { and }\left|\int_{a}^{b} f(x) d x-\int_{a}^{b} T_{L}(x) d x\right|<\epsilon .
$$

proof This follows directly from the definition.
Theorem 7 (continuous functions are integrable) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then f is integrable on the interval $[a, b]$.

Figure Example for Theorem 7. Take an equidistant partition.
proof Idea: A continuous function on $[a, b]$ is uniformly continuous. The idea is to use Theorem 6 and construct explicit step functions that appproximate f.

Fix $\epsilon>0$. By Lecture 19, Theorem 4 we know that f is uniformly continuous. Hence for the given ϵ there is $\delta(\epsilon)=\delta$, such that for all $x, \tilde{x} \in[a, b]$

$$
\begin{equation*}
|x-\tilde{x}|<\delta \Rightarrow \mid f(x)-f(\tilde{x} \mid<\epsilon \tag{}
\end{equation*}
$$

We now construct our step functions:

Math 35: Real Analysis
 Winter 2018

Wednesday $02 / 28 / 18$
1.) Partition P : We first choose a partition. In this case it is practical to choose an equidistant partition $P=\left\{\left(t_{k}\right)_{k=0, ., n}\right\}$.

$$
\begin{equation*}
\text { For } \frac{b-a}{n}<\delta, \quad \text { set } \quad t_{k}=a+k \cdot \frac{b-a}{n} \text {. Hence } \Delta t_{k}=\|P\|=\frac{b-a}{n}<\delta . \tag{}
\end{equation*}
$$

2.) Upper and lower step functions f^{U} and f^{L} : We set

$$
\begin{aligned}
M_{k} & =\max \left\{f(x), x \in\left[t_{k}, t_{k+1}\right]\right\} \quad \text { and } \quad f^{U}(x)=M_{k} \text { for all } x \in\left(t_{k}, t_{k+1}\right) \\
m_{k} & =\min \left\{f(x), x \in\left[t_{k}, t_{k+1}\right]\right\} \quad \text { and } \quad f_{L}(x)=m_{k} \text { for all } x \in\left(t_{k}, t_{k+1}\right) .
\end{aligned}
$$

By the Extreme value theorem we know that

$$
\begin{array}{rcl}
M_{k}=f\left(\xi_{k}\right) \text { and } m_{k}=f\left(\tilde{\xi}_{k}\right) & \text { for some } & \xi_{k}, \tilde{\xi}_{k} \in\left[t_{k}, t_{k+1}\right] \quad \text { hence by }\left({ }^{*}\right),\left({ }^{* *}\right) \\
\left|\xi_{k}-\tilde{\xi}_{k}\right| \leq \frac{b-a}{n}<\delta & \Rightarrow & \left|f\left(\xi_{k}\right)-f\left(\tilde{\xi}_{k}\right)\right|=M_{k}-m_{k}<\epsilon
\end{array}
$$

Clearly for the step functions we have $f_{L} \leq f \leq f^{U}$. For the difference of the integrals we get

$$
\int_{a}^{b} f^{U}(x) d x-\int_{a}^{b} f_{L}(x)=\sum_{k=0}^{n-1} M_{k} \cdot \Delta t_{k}-\sum_{k=0}^{n-1} m_{k} \cdot \Delta t_{k}=\sum_{k=0}^{n-1} \underbrace{\left(M_{k}-m_{k}\right)}_{<\epsilon(*),(* *)} \cdot \underbrace{\Delta t_{k}}_{=\frac{b-a}{n}}<\epsilon \cdot(b-a) .
$$

As ϵ was chosen arbitrarily this is true for any ϵ. Hence f is integrable by Theorem 6.
Theorem 8 (Linearity and monotonicity of the integral for functions)
Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two integrable functions then
a) $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$.
b) For $c \in \mathbb{R}$ we have that $\int_{a}^{b} c \cdot f(x) d x=c \cdot \int_{a}^{b} f(x) d x$.
c) If $f(x) \leq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
proof Idea: This follows from the corresponding theorem for step functions Lecture 23, Theorem 9 and the fact that any integrable function can be "approximated" by step functions.

Example: a) By Theorem 6 we know that for fixed $\epsilon>0$ there exist step functions
$f_{\epsilon}^{U}=f^{U}, f_{L, \epsilon}=f_{L}, g_{\epsilon}^{U}=g^{U}, g_{L, \epsilon}=g_{L} \in T([a, b])$, satisfying
$f_{L} \leq f \leq f^{U} \quad$ and $\quad g_{L} \leq g \leq g^{U}$ s.th. $\int_{a}^{b} f^{U}(x)-f_{L}(x) d x<\frac{\epsilon}{2}$ and $\int_{a}^{b} g^{U}(x)-g_{L}(x) d x<\frac{\epsilon}{2}$
Hence

$$
f_{L}+g_{L} \leq f+g \leq f^{U}+g^{U} \quad \text { and } \quad \int_{a}^{b}\left(f^{U}(x)-f_{L}(x)\right)-\left(g^{U}(x)-g_{L}(x)\right) d x<\epsilon .
$$

As ϵ was chosen arbitrarily this means that $f+g$ is integrable and part a) holds.

Math 35: Real Analysis
 Winter 2018

Example: Calculate $\int_{0}^{1} x^{2} d x$ using the approach from Theorem 7 by dividing the interval into n equidistant subinterval and calculating the upper and lower step function. Recall that $\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$:

Solution: We calculate the lower bound. For fixed n we have the partition $P=\left(x_{k}\right)_{k=0, \ldots, n}$ of $[0,1]$ such that $x_{k}=\frac{k}{n}$. The intervals are $\left(\frac{k}{n}, \frac{k+1}{n}\right)$ and we have $\|P\|=\Delta x_{k}=\frac{1}{n}$.
As $f(x)=x^{2}$ is an increasing function on the interval $[0,1]$ we know that the minimal value in each subinterval is the left endpoint. Hence for our step function $f_{L}=f_{L, P}$

$$
f_{L}(x)=f\left(\frac{k}{n}\right)=\left(\frac{k}{n}\right)^{2} \text { for all } x \in\left(\frac{k}{n}, \frac{k+1}{n}\right) .
$$

Integrating f_{L} we obtain:

$$
\int_{0}^{1} f_{L}(x) d x=\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \Delta x_{k}=\sum_{k=0}^{n-1}\left(\frac{k}{n}\right)^{2} \cdot \frac{1}{n}=\frac{1}{n^{3}} \cdot \sum_{k=0}^{n-1} k^{2}=\frac{1}{n^{3}} \cdot \frac{(n-1) \cdot n \cdot(2 n-1)}{6} .
$$

Taking the limit $n \rightarrow \infty$ we obtain:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \cdot \frac{(n-1) \cdot n \cdot(2 n-1)}{6}=\lim _{n \rightarrow \infty} \frac{2 n^{2}-3 n+1}{6 n^{2}}=\frac{2}{6}=\frac{1}{3} .
$$

Note: It follows from the proof of Theorem 7 that the limit $n \rightarrow \infty$ must exist. In fact this is still true if we take any point $c_{k} \in\left(x_{k}, x_{k+1}\right)$ instead of the minimum to construct a step function T such that $T(x)=f\left(c_{k}\right)$ on $\left(x_{k}, x_{k+1}\right)$ and take finer and finer partitions.

Theorem 9 (Cauchy-Schwarz inequality for integration)

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two continuous functions. Then f^{2} and g^{2} are continuous functions and we have

$$
\left|\int_{a}^{b} f(x) g(x) d x\right|^{2} \leq\left(\int_{a}^{b} f^{2}(x) d x\right) \cdot\left(\int_{a}^{b} g^{2}(x) d x\right)
$$

proof exercise
Hint: The proof of Theorem 7 shows that we can find approximating lower and upper step functions for f and g on an equidistant partition.

Math 35: Real Analysis
 Winter 2018

Theorem 10 (Mean value theorem of integration) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two continuous functions, such that $g(x) \geq 0$ for all $x \in[a, b]$. Then there is $c \in(a, b)$, such that

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \cdot \int_{a}^{b} g(x) d x
$$

proof We set

$$
m=\min \{f(x), x \in[a, b]\}=f(u) \quad \text { and } \quad M=\max \{f(x), x \in[a, b]\}=f(v)
$$

Then as $g \geq 0$ we know that $m \cdot g \leq f \cdot g \leq M \cdot g$ and by Theorem $8 \mathrm{~b}, \mathrm{c}$) we have

$$
\underbrace{m}_{=f(u)} \cdot \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \underbrace{M}_{=f(v)} \cdot \int_{a}^{b} g(x) d x .
$$

If $\int_{a}^{b} g(x) d x=0$ then it follows from this inequality that $\int_{a}^{b} f(x) g(x)=0$ and our statement is true. If $\int_{a}^{b} g(x) d x \stackrel{g>0}{>} 0$ then we can divide the inequality by this value and obtain

$$
f(u) \leq \frac{\int_{a}^{b} f(x) g(x) d x}{\int_{a}^{b} g(x) d x} \leq f(v)
$$

By the Mean value theorem there is a $c \in[a, b]$, such that

$$
f(c)=\frac{\int_{a}^{b} f(x) g(x) d x}{\int_{a}^{b} g(x) d x} \Rightarrow f(c) \cdot \int_{a}^{b} g(x) d x=\int_{a}^{b} f(x) g(x) d x .
$$

and again our statement is true.

