Math 35: Real Analysis
 Winter 2018

Monday 02/26/18

Lecture 23

Chapter 5 - Integration

Chapter 5.1-Integration for step functions

Plan: 1.) We define integration first for step functions (\simeq area).
2.) We say that a function f is integrable if it can be "approximated" by step functions.

Definition 1 (Partitions) A partition P of an interval $[a, b]$ is a finite sequence of points $P=\left\{\left(x_{k}\right)_{k=0, . ., n}\right\}$, such that

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b .
$$

We call an interval $\left(x_{k}, x_{k+1}\right)$ a subinterval of the partition P. We call the width w_{P} of the largest subinterval

$$
w_{P}=\|P\|=\max \left\{\left|x_{k+1}-x_{k}\right|, \quad \text { where } k \in\{0,1,2, \ldots, n-1\}\right\} \quad \text { the mesh or norm of } P .
$$

If for two partitions P_{1}, P_{2} of $[a, b]$ we have that $P_{1} \subset P_{2}$. Then we call P_{2} a refinement of P_{1}.

Defintion 2 (Step functions) A function $f:[a, b] \rightarrow \mathbb{R}$ is called a step function if there is a partition $P=\left\{\left(x_{k}\right)_{k=0, ., n}\right\}$ of $[a, b]$, such that f is constant on each subinterval $\left(x_{k}, x_{k+1}\right)$ of the partition P. We denote by $T([a, b])$ the set of all step functions on the interval $[a, b]$.

Example 3: On the interval $[0,10]$ sketch a partition P_{1}, a refinement P_{2} and a step function f for P_{1}. Then estimate $w_{P_{1}}$. Is f also a step function for P_{2} ?

Math 35: Real Analysis
 Winter 2018

Note 4: If $P=\left\{\left(x_{k}\right)_{k=0, \ldots, n}\right\}$ is a partition of $[a, b]$, then we are not interested in the values of the step function f on the points $\left(x_{k}\right)_{k=0, . ., n}$ of the partition. This is because for integration it does not matter which values the the function takes on this finite number of points.

Note 5: Let $[a, b]$ an interval and $f:[a, b] \rightarrow \mathbb{R}$ be a step function with its partition P_{1}. If f is not constant on an open subinterval $\left(x_{k}, x_{k+1}\right)$ of another partition $P_{2}=\left\{\left(x_{k}\right)_{k=0, \ldots, n}\right\}$. Then f is not a step function for P_{2}.
We can also say that P_{2} is not a valid or admissible partition for f.
Example: Sketch a step function f on the interval $[0,5]$ with an admissible partion P_{1} and a non-admissible partion P_{2}.

Defintion 6 (Integration for step functions) Let $f \in T([a, b])$ be a step function on $[a, b]$ with respect to the partition $P=\left\{\left(x_{k}\right)_{k=0, ., n}\right\}$, i.e.

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b .
$$

Suppose that for $k \in\{0,1, \ldots, n-1\}$ we have

$$
f(x)=c_{k} \quad \text { for all } \quad x \in\left(x_{k}, x_{k+1}\right) \quad \text { or }\left.\quad f(x)\right|_{x \in\left(x_{k}, x_{k+1}\right)}=c_{k} .
$$

Then we define the integral of $f(\simeq$ area) on the interval $[a, b]$ by

$$
\int_{P} f(x) d x=\int_{a}^{b} f(x) d x:=\sum_{k=0}^{n-1} c_{k} \cdot\left(x_{k+1}-x_{k}\right)=\sum_{k=0}^{n-1} c_{k} \cdot \Delta x_{k}, \quad \text { where } \quad \Delta x_{k}=\left(x_{k+1}-x_{k}\right) .
$$

Example: For your step function from Example 3 estimate the integral $\int_{0}^{10} f(x) d x$.

Math 35: Real Analysis
 Winter 2018

It remains to show that the integral is well-defined. This means that the integral is independent of the chosen admissible partition for f. To show this we first prove the following lemma.

Lemma 7 Let $[a, b]$ be an interval and P_{1} and P_{2} be two partions of $[a, b]$. Then there is a common refinement P of P_{1} and P_{2}, i.e. $P_{1} \subset P$ and $P_{2} \subset P$.

Proof Idea: We take the union $P=P_{1} \cup P_{2}$. Then clearly for $P_{1}=\left\{\left(x_{k}^{1}\right)_{k=0, \ldots, n}\right\}$ and $P_{2}=\left\{\left(x_{k}^{2}\right)_{k=0, . ., m}\right\}$ we have after (if necessary) eliminating multiple occurences and reordering

$$
P=\left\{t_{0}, t_{1}, \ldots, t_{l}\right\}=\left\{x_{0}^{1}, x_{1}^{1}, \ldots, x_{n}^{1}\right\} \cup\left\{x_{0}^{2}, x_{1}^{2}, \ldots, x_{m}^{2}\right\}
$$

is a partition of $[a, b]$, such that $P_{1} \subset P$ and $P_{2} \subset P$.
proof (Integration for step functions is well-defined) Let $f:[a, b] \rightarrow \mathbb{R}$ be a step function and $P_{1}=\left\{\left(x_{k}\right)_{k=0, . ., n}\right\}$ be a partition, such that for $k \in\{0,1, \ldots, n-1\}$ we have

$$
f(x)=c_{k} \quad \text { for all } \quad x \in\left(x_{k}, x_{k+1}\right) .
$$

Idea: If the statement is true for refinements then we can use Lemma 7 to conclude that the value is the same for any admissible partition.
1.) Let $P=\left\{\left(t_{k}\right)_{k=0, . ., m}\right\}$ be a refinement of P_{1} then

$$
\int_{P_{1}} f(x) d x=\sum_{k=0}^{n-1} c_{k} \cdot\left(x_{k+1}-x_{k}\right) \quad \text { and } \quad \int_{P} f(x) d x=\sum_{l=0}^{m-1} c_{l}^{\prime} \cdot\left(t_{l+1}-t_{l}\right)
$$

But as $P_{1} \subset P$ we know we know that for all points of P between x_{k} and x_{k+1} i.e $x_{k}=t_{i}<$ $t_{i+1}<\ldots<t_{i+b}=x_{k+1}: f(x)=c_{k}$, therefore

$$
c_{k} \cdot\left(x_{k+1}-x_{k}\right)=\sum_{l=0}^{b-1} c_{k} \cdot\left(t_{i+l+1}-t_{i+l}\right)=c_{k} \cdot\left(x_{k+1}-x_{k}\right) .
$$

As this is true for any pair of points $\left(x_{k}, x_{k+1}\right)$, we have that

$$
\int_{P_{1}} f(x) d x=\int_{P} f(x) d x
$$

Hence the integral is the same for a partition and its refinement.
2.) If P_{1} and P_{2} are two partitions for f then by Lemma 7 there is always a common refinement P. Hence

$$
\int_{P_{1}} f(x) d x=\int_{P} f(x) d x=\int_{P_{2}} f(x) d x
$$

and our statement is true for any (admissible) partition of f.

Math 35: Real Analysis
 Winter 2018

You have seen in Linear Algebra that the set of functions $\mathcal{F}([a, b])=\{f:[a, b] \rightarrow \mathbb{R}\}$ is a vector space with addition and scalar multiplication. We also have

Theorem 8 The set $T([a, b])=\{f:[a, b] \rightarrow \mathbb{R}, f$ step function $\}$ is a subspace of $\mathcal{F}([a, b])$. This means we have
a) $0 \in T([a, b])$ (zero function in $T([a, b])$)
b) If $f, g \in T([a, b])$ then $f+g \in T([a, b])$.
c) If $c \in \mathbb{R}$ and $f \in T([a, b])$ then $c \cdot f \in T([a, b])$.
proof HW 8. Hint: Use Lemma 7.
Using Lemma 7 we can also show:
Theorem 9 (Linearity and monotonicity of the integral)
Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two step functions then
a) $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$.
b) For $c \in \mathbb{R}$ we have that $\int_{a}^{b} c \cdot f(x) d x=c \cdot \int_{a}^{b} f(x) d x$.
c) If $f(x) \leq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.

Note: This means that $\int: T([a, b]) \rightarrow \mathbb{R}$ is a linear function between vector spaces.
proof of Theorem 9 Idea: This follows from the corresponding rules for sums and Lemma 7. Example: b) with the notation for f as in Defintion 1 we have

$$
\int_{a}^{b} c \cdot f(x) d x=\left.\sum_{k=0}^{n-1} c \cdot \underbrace{f(x)}_{=c_{k}}\right|_{x \in\left(x_{k}, x_{k+1}\right)} \cdot\left(x_{k+1}-x_{k}\right)=c \cdot \sum_{k=0}^{n-1} c_{k} \cdot\left(x_{k+1}-x_{k}\right)=c \cdot \int_{a}^{b} f(x) d x .
$$

Exercise 10 For $f, g \in T([a, b]$ show that
a) $f \cdot g$
b) $|f|^{p}$ for $p \in \mathbb{R}^{+}$
c) $\min \{f, g\}$ and $\max \{f, g\}$
are step functions and therefore integrable.
proof HW 8.

Math 35: Real Analysis
 Winter 2018

Chapter 5.2 - Darboux integral for functions

Aim: We say that a function f is integrable if it can be "approximated" by step functions.
Defintion 1 (upper and lower Darboux sums) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function and $P=\left\{\left(x_{k}\right)_{k=0, \ldots, n}\right\}$ be a partition of $[a, b]$,i.e.

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b .
$$

We define two step functions $f^{U}, f_{L}:[a, b] \rightarrow \mathbb{R}$ associated to f and P in the following way

$$
\begin{aligned}
& M_{k}=\sup \left\{f(x), x \in\left(x_{k}, x_{k+1}\right)\right\} \quad \text { and } \quad f^{U}(x)=M_{k} \quad \text { for all } \quad x \in\left(x_{k}, x_{k+1}\right) \\
& m_{k}=\inf \left\{f(x), x \in\left(x_{k}, x_{k+1}\right)\right\} \quad \text { and } \quad f_{L}(x)=m_{k} \quad \text { for all } x \in\left(x_{k}, x_{k+1}\right) .
\end{aligned}
$$

If the partition P is important we will write f_{P}^{U} for f^{U} and $f_{L, P}$ for f_{L}.
Finally the Darboux sums of f with respect to P are the integrals

$$
\int_{P}^{U} f=\int_{a}^{b} f^{U}(x) d x \text { (upper sum) and } \quad \int_{L, P} f=\int_{a}^{b} f_{L}(x) d x \text { (lower sum) }
$$

Example Sketch a continuous function f in the interval [0,10]. Using a partition P with four points, sketch f^{U} and f_{L} and estimate the integrals $\int_{P}^{U} f$ and $\int_{L, P} f$.

Using this approximation with step functions we can try to find the "best approximating" f^{U} and f_{L} by varying and refining the partition.

Definition 2 (Upper and lower Darboux integral) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. The Darboux integrals of f are

$$
\begin{aligned}
& \overline{\int_{a}^{b}} f(x) d x=\inf \left\{\int_{P}^{U} f=\int_{a}^{b} f_{P}^{U}(x) d x, P \text { partition of }[a, b]\right\} \quad \text { (upper integral) } \\
& \underline{\int_{a}^{b}} f(x) d x=\sup \left\{\int_{L, P} f=\int_{a}^{b} f_{L, P}(x), P \text { partition of }[a, b]\right\} \quad \text { (lower integral). }
\end{aligned}
$$

Math 35: Real Analysis
 Winter 2018

Finally we say that a function f is integrable if the upper and lower Darboux integral coincide. This means that the function can be approximated by greater and lower step functions such that the corresponding integrals exists and are equal.

Defintion 3 (integrable functions) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Then f is (Darboux) integrable on the interval $[a, b]$ if

$$
\overline{\int_{a}^{b}} f(x) d x=L=\underline{\int_{a}^{b}} f(x) d x
$$

In this case we write $L=\int_{a}^{b} f(x) d x$.
Note: For any partition P of $[a, b]$ we have that

$$
\int_{a}^{b} f_{L}(x) d x \leq \int_{a}^{b} f^{U}(x) d x \text { hence } \int_{a}^{b} f(x) d x \leq \overline{\int_{a}^{b}} f(x) d x
$$

Example 4: Every step function $f \in T([a, b])$ is Darboux integrable.
proof Let f be a step function with partition P. Then

$$
\begin{equation*}
f_{L, P}=f=f_{P}^{U} \quad \text { hence } \quad \int_{a}^{b} f_{L}(x) d x=\int_{a}^{b} f_{P}^{U}(x) d x \tag{*}
\end{equation*}
$$

By Defintion 2 we have that

$$
\int_{a}^{b} f_{L, P}(x) d x \leq \underline{\int_{a}^{b}} f(x) d x \leq \overline{\int_{a}^{b}} f(x) d x \leq \int_{a}^{b} f_{P}^{U}(x)
$$

Therefore by $\left({ }^{*}\right)$ we have equality, i.e $\underline{\int_{a}^{b}} f(x) d x=\overline{\int_{a}^{b}} f(x)=\int_{a}^{b} f(x) d x$

Example 5: Let $f:[-1,1] \rightarrow \mathbb{R}$ be the function, such that

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in \mathbb{R} \backslash \mathbb{Q} \\
1 & & x \in \mathbb{Q}
\end{array}\right.
$$

Then f is not integrable on $[-1,1]$.

