Math 35: Real Analysis Winter 2018

Friday 02/23/18

Lecture 22

Theorem 9 (L'Hôpital's rule) Let $f, g : [a, b] \to \mathbb{R}$ be two continuous functions, such that f and g are differentiable on $(a, b) \setminus \{c\}$. Suppose that

- 1.) $g'(x) \neq 0$ for all $x \in (a, b) \setminus \{c\}$.
- 2.) $\lim_{x \to c} f(x) = f(c) = g(c) = \lim_{x \to c} g(x) = 0.$
- 3.) $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L$, meaning that the limit exists.

Then $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)} = L.$

proof We note that by the **Mean value theorem** and 2.) we have that for $x \in (a,b) \setminus \{c\}$ there is ζ_x in (x,c) or (c,x) such that

$$0 \stackrel{1.)}{\neq} g'(\zeta_x) = \frac{g(x) - g(c)}{x - c} \stackrel{2.)}{=} \frac{g(x)}{x - c} \stackrel{x - c \neq 0}{\Rightarrow} g(x) \neq 0. \quad (*)$$

Hence also $g(x) \neq 0$.

Furthermore by **Cauchy's mean value theorem** we know that for $x \in (a,b) \setminus \{c\}$ there is z_x in (x,c) or (c,x) such that

$$\frac{f'(z_x)}{g'(z_x)} = \frac{f(x) - f(c)}{g(x) - g(c)} \stackrel{2.)}{=} \frac{f(x)}{g(x)}$$

As z_x lies between x and c we can take the limit and obtain

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(z_x)}{g'(z_x)} \stackrel{3.}{=} L.$$

This proves our statement.

Examples: Use L'Hôpital's rule to find the following limits:

a)
$$\lim_{x \to 0} -\frac{e^{x^2} - 1}{x^2}$$
 b) $\lim_{x \to c} \frac{h(x^2) - h(c^2)}{\sqrt{x} - \sqrt{c}}$

Here $h : \mathbb{R} \to \mathbb{R}$ is a differentiable function. Find your result in terms of h'.

Math 35: Real Analysis Winter 2018

Friday 02/23/18

 $\mathbf{Exercise} \ \mathbf{10} \ \mathbf{Our} \ \mathbf{aim} \ \mathbf{is} \ \mathbf{to} \ \mathbf{show} \ \mathbf{that}$

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \quad \text{for all } x \in \mathbb{R} \,.$$

a) Show that for a fixed $x \in \mathbb{R}$ we have that

$$\lim_{y \to 0} \frac{\ln(1 + x \cdot y)}{y} = x.$$

b) Use Ch. 4.1, exercise 7 to show that

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$

c) Use part b) to show that

$$\lim_{n \to \infty} \left(1 - \frac{x}{n^2} \right)^n = 1.$$