Wednesday 02/21/18

Lecture 21

Chapter 4.2 - Properties of differentiable functions

Aim: We will prove a number of theorems about differentiable functions.

Definition 1 (Extreme values) Let I be an interval and $f: I \to \mathbb{R}$ be a function on I. Then f has a

- a) (global) maximum at c if $f(x) \leq f(c)$ for all $x \in I$.
- b) (global) minimum at c if $f(x) \ge f(c)$ for all $x \in I$.
- c) (global) extremum at c if it has either a maximum or minimum at c.

An extremum can also be local. If there is a $\delta > 0$, such that for all $x \in (c - \delta, c + \delta)$

- d) $f(x) \leq f(c)$, then f has a (local) maximum at c.
- e) $f(x) \ge f(c)$, then f has a (local) minimum at c.
- c) We say that f has a (local) extremum at c if it has either a local maximum or local minimum at c.

Note: The maximum and minimum is the value of the function f(c), not the point c.

Example: Sketch a function with both global and local maxima and minima, where one local maximum is not the global maximum and label the extrema. Can a strictly monotone function have a global maximum? Where does the function f(x) = 1 have its maxima and minima?

We recall

Definition Let $f: (a, b) \to \mathbb{R}$ be a function and $c \in (a, b)$. Then the function f is differentiable at c if the limit

$$\lim_{x \to c} \left| \frac{f(x) - f(c)}{x - c} \right| = f'(c) \quad \text{ exists.}$$

The value f'(c) the **derivative** of f at c.

Definition 2 (critical point) Let I be an interval and $f: I \to \mathbb{R}$ be a function on I. Then c is a **critical point** of f if

f'(c) = 0 or f'(c) does not exist.

Theorem 3 Let I be an interval and $f: I \to \mathbb{R}$ be a function on I. If f has a local extremum at x = c then c is a critical point of f.

proof If f has a local extremum at x = c and is not differentiable at c then it is a critical point. Suppose that f(x) has a local minimum at x = c and is differentiable. Then there is a δ -neighborhood of c, such that

$$f(c) \le f(x)$$
 for all $x \in (c - \delta, c + \delta)$.

Looking at $F_c(x) = \frac{f(x) - f(c)}{x - c}$ on $(c - \delta, c + \delta)$. For x < c and x > c we get

By the same reasoning f'(c) = 0 if f has a local maximum.

Theorem 4 (Rolle's theorem) Let $f : [a, b] \to \mathbb{R}$ be a continuous function, such that f is differentiable on (a, b). If f(a) = f(b) then there is a point $c \in (a, b)$, such that f'(c) = 0.

Example: Sketch a function f on [0,5] with f(0) = f(5) = 1. Then find the point c for your function.

proof If f is constant (f(x) = f(a) for all $x \in [a, b]$) then our statement is obvious. So we may assume that f is not constant. As the interval is closed it follows from the **Extreme value theorem** for continuous functions that f has a minimum m and a maximum M on [a, b]. We know that

$$m \le f(x) \le M$$
 for all $x \in [a, b]$.

If both are equal to f(a) = f(b) then our function would be constant, hence either *m* or *M* are different from f(a) = f(b). We may assume that $M = f(c) \neq f(a)$. Then by **Theorem 3** we know that f'(c) = 0.

With the help of **Rolle's theorem** we can prove the following theorem:

Theorem 5 (Mean value theorem - MVT) Let $f : [a,b] \to \mathbb{R}$ be a continuous function, such that f is differentiable on (a,b). Then there is a point $c \in (a,b)$, such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Example Sketch a function f on [0, 5] with f(0) = 1 and f(5) = 5. Then find the point c from the mean value theorem for this function. What does the theorem mean geometrically?

Wednesday 02/21/18

proof This is a special case of Rolle's theorem applied to the function

$$g(x) = (f(x) - f(a)) - \left(\frac{f(b) - f(a)}{b - a}\right) \cdot (x - a).$$

Examples: (Inequalities from the MVT)

a) Setting b = x and a = 0 in **Theorem 5** show that

$$\sin(x) \le x$$
 for $x \ge 0$ and $\sin(x) \ge x$ for $x \le 0$.

b) Show that for x > 0 we have $\frac{x}{x+1} \le \ln(x+1) \le x$. **Hint:** Use **Theorem 5** with x = b. What should be *a*?

Corollary 6 Let $f : [a,b] \to \mathbb{R}$ be a continuous function, such that f is differentiable on (a,b), such that $m \leq f'(c) \leq M$ for all $c \in (a,b)$. Then

 $m \cdot (y-x) \leq f(y) - f(x) \leq M \cdot (y-x) \quad \text{for all } x, y \in (a,b), y > x.$

proof HW 7

Another important application of the Mean value theorem is the following theorem.

Theorem 7 (Montonicity) Let $f : [a, b] \to \mathbb{R}$ be a continuous function, such that f is differentiable on (a, b). If

- a) f' > 0 on (a, b) then f is strictly increasing on [a, b].
- b) $f' \ge 0$ on (a, b) then f is increasing on [a, b].
- c) f' = 0 on (a, b) then f is **constant** on [a, b].
- d) $f' \leq 0$ on (a, b) then f is **decreasing** on [a, b].
- e) f' < 0 on (a, b) then f is strictly decreasing on [a, b].

proof a) If f'(c) > 0 for all c in (a, b) then by the **Mean value theorem** we have for all y > x:

Example: Show that the differential equation f(x) = f'(x) for all $x \in \mathbb{R}$ with f(0) = A has exactly one solution. **Hint:** Look at the function $F(x) = f(x) \cdot e^{-x}$.

Note: The first derivative test follows from Theorem 7.

Theorem 8 (Cauchy's mean value theorem) Let $f, g : [a, b] \to \mathbb{R}$ be two continuous functions, such that f and g are differentiable on (a, b). Then there is a point $c \in (a, b)$, such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

proof We apply Rolle's theorem to the function

$$h(x) = (f(b) - f(a)) \cdot g(x) - (g(b) - g(a)) \cdot f(x).$$