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Lecture 21

Chapter 4.2 - Properties of di�erentiable functions

Aim: We will prove a number of theorems about di�erentiable functions.

De�nition 1 (Extreme values) Let I be an interval and f : I → R be a function on I.
Then f has a

a) (global) maximum at c if f(x) ≤ f(c) for all x ∈ I.

b) (global) minimum at c if f(x) ≥ f(c) for all x ∈ I.

c) (global) extremum at c if it has either a maximum or minimum at c.

An extremum can also be local. If there is a δ > 0 , such that for all x ∈ (c− δ, c+ δ)

d) f(x) ≤ f(c), then f has a (local) maximum at c.

e) f(x) ≥ f(c), then f has a (local) minimum at c.

c) We say that f has a (local) extremum at c if it has either a local maximum or local
minimum at c.

Note: The maximum and minimum is the value of the function f(c), not the point c.

Example: Sketch a function with both global and local maxima and minima, where one local
maximum is not the global maximum and label the extrema. Can a strictly monotone function
have a global maximum? Where does the function f(x) = 1 have its maxima and minima?
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We recall
De�nition Let f : (a, b)→ R be a function and c ∈ (a, b). Then the function f is di�erentiable
at c if the limit

lim
x→c

f(x)− f(c)
x− c

= f ′(c) exists.

The value f ′(c) the derivative of f at c.

De�nition 2 (critical point) Let I be an interval and f : I → R be a function on I. Then
c is a critical point of f if

f ′(c) = 0 or f ′(c) does not exist.

Theorem 3 Let I be an interval and f : I → R be a function on I. If f has a local extremum
at x = c then c is a critical point of f .

proof If f has a local extremum at x = c and is not di�erentiable at c then it is a critical
point. Suppose that f(x) has a local minimum at x = c and is di�erentiable. Then there is a
δ-neighborhood of c, such that

f(c) ≤ f(x) for all x ∈ (c− δ, c+ δ).

Looking at Fc(x) =
f(x)−f(c)

x−c on (c− δ, c+ δ). For x < c and x > c we get

By the same reasoning f ′(c) = 0 if f has a local maximum.
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Theorem 4 (Rolle's theorem) Let f : [a, b]→ R be a continuous function, such that f is
di�erentiable on (a, b). If f(a) = f(b) then there is a point c ∈ (a, b), such that f ′(c) = 0.

Example: Sketch a function f on [0, 5] with f(0) = f(5) = 1. Then �nd the point c for
your function.

proof If f is constant (f(x) = f(a) for all x ∈ [a, b]) then our statement is obvious. So we
may assume that f is not constant. As the interval is closed it follows from the Extreme value

theorem for continuous functions that f has a minimum m and a maximum M on [a, b]. We
know that

m ≤ f(x) ≤M for all x ∈ [a, b].

If both are equal to f(a) = f(b) then our function would be constant, hence either m or M are
di�erent from f(a) = f(b). We may assume that M = f(c) 6= f(a). Then by Theorem 3 we
know that f ′(c) = 0. �

With the help of Rolle's theorem we can prove the following theorem:

Theorem 5 (Mean value theorem - MVT) Let f : [a, b] → R be a continuous function,
such that f is di�erentiable on (a, b). Then there is a point c ∈ (a, b), such that

f ′(c) =
f(b)− f(a)

b− a
.

Example Sketch a function f on [0, 5] with f(0) = 1 and f(5) = 5. Then �nd the point c from
the mean value theorem for this function. What does the theorem mean geometrically?
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proof This is a special case of Rolle's theorem applied to the function

g(x) = (f(x)− f(a))−
(
f(b)− f(a)

b− a

)
· (x− a).

Examples: (Inequalities from the MVT)

a) Setting b = x and a = 0 in Theorem 5 show that

sin(x) ≤ x for x ≥ 0 and sin(x) ≥ x for x ≤ 0.

b) Show that for x > 0 we have x
x+1 ≤ ln(x+ 1) ≤ x.

Hint: Use Theorem 5 with x = b. What should be a?

Corollary 6 Let f : [a, b] → R be a continuous function, such that f is di�erentiable on
(a, b), such that m ≤ f ′(c) ≤M for all c ∈ (a, b). Then

m · (y − x) ≤ f(y)− f(x) ≤M · (y − x) for all x, y ∈ (a, b), y > x.

proof HW 7
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Another important application of the Mean value theorem is the following theorem.

Theorem 7 (Montonicity) Let f : [a, b] → R be a continuous function, such that f is di�er-
entiable on (a, b). If

a) f ′ > 0 on (a, b) then f is strictly increasing on [a, b].

b) f ′ ≥ 0 on (a, b) then f is increasing on [a, b].

c) f ′ = 0 on (a, b) then f is constant on [a, b].

d) f ′ ≤ 0 on (a, b) then f is decreasing on [a, b].

e) f ′ < 0 on (a, b) then f is strictly decreasing on [a, b].

proof a) If f ′(c) > 0 for all c in (a, b) then by the Mean value theorem

we have for all y > x:

Example: Show that the di�erential equation f(x) = f ′(x) for all x ∈ R with f(0) = A has
exactly one solution.
Hint: Look at the function F (x) = f(x) · e−x.
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Note: The �rst derivative test follows from Theorem 7.

Theorem 8 (Cauchy's mean value theorem ) Let f, g : [a, b] → R be two continuous
functions, such that f and g are di�erentiable on (a, b). Then there is a point c ∈ (a, b), such
that

f ′(c)

g′(c)
=
f(b)− f(a)
g(b)− g(a)

.

proof We apply Rolle's theorem to the function

h(x) = (f(b)− f(a)) · g(x)− (g(b)− g(a)) · f(x).


