Math 35: Real Analysis
 Winter 2018

Monday 02/19/18

Lecture 20

Chapter 4-Differentiation

Chapter 4.1-Derivative of a function

Result: We define the derivative of a function in a point as the limit of a new function, the limit of the difference quotient.

Note: Recall that for fixed c and x we have that $\frac{f(x)-f(c)}{x-c}$ is the slope of the secant line passing through $(c, f(c))$ and $(x, f(x))$.

Definition 1 Let $f:(a, b) \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$. Then the function f is differentiable at c if the limit

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=f^{\prime}(c) \quad \text { exists. }
$$

We call the value $f^{\prime}(c)$ the derivative of f at c. The function f is differentiable on (a, b) if it is differentiable at each point of (a, b).

Example: Consider the function $f(x)=x^{2}+2 x+1=(x+1)^{2}$.
a) Sketch $f(x)$ in the interval $[-3,5]$.
b) Draw the secant line through $(1, f(1))$ and $(3, f(3))$ and calculate its slope.
c) Using the definition of the limit calculate $f^{\prime}(1)$ and $f^{\prime}(c)$ in general. Then draw the tangent line for $f(x)$ in $x=1$.

Math 35: Real Analysis
 Winter 2018

Theorem 1 (f differentiable $\Rightarrow f$ continuous) Let $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable function on (a, b). Then f is continuous on (a, b).
proof: We have to show that $\lim _{x \rightarrow c} f(x)=f(c)$. We write $f(x)-f(c)=(x-c) \cdot \frac{f(x)-f(c)}{x-c}$. Then

As the derivative is the limit of the function $F_{c}(x)=\frac{f(x)-f(c)}{x-c}$ at $\mathrm{x}=\mathrm{c}$ all theorems about limits of functions apply.

Example Calculate $F_{1}(x)$ for the previous example, the function $f(x)=(x+1)^{2}$. What does $F_{1}(x)$ represent?

Especially we have:
Theorem 3 (Sequence criterion for the derivative) Let $f:(a, b) \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$.
a) The function f is differentiable at c if and only if for any sequence $\left(x_{n}\right)_{n} \subset(a, b) \backslash\{c\}$, such that

$$
\lim _{n \rightarrow \infty} x_{n}=c \text { we have } \lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(c)}{x_{n}-c}=L=f^{\prime}(c)
$$

b) If $\left(x_{n}\right)_{n},\left(z_{n}\right)_{n} \subset(a, b) \backslash\{c\}$ are two sequences, such that

$$
\lim _{n \rightarrow \infty} x_{n}=c=\lim _{n \rightarrow \infty} z_{n} \quad \text { but } \lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(c)}{x_{n}-c}=L_{1} \neq L_{2}=\lim _{n \rightarrow \infty} \frac{f\left(z_{n}\right)-f(c)}{z_{n}-c} .
$$

Then f is not differentiable in c.

Math 35: Real Analysis
 Winter 2018

Example: Use Theorem 3 b) to show that the function given by

$$
f(x)=\left\{\begin{array}{ccc}
\frac{1}{n} & \text { if } & x=\frac{1}{n} \text { for } n \in \mathbb{Z} \\
0 & \text { otherwise }
\end{array} \quad \text { is not diffferentiable in } x=0\right.
$$

Similarly the linearity of the derivative follows from the limit laws for functions:
Theorem 4 (Linearity of differentiation) Let $f, g:(a, b) \rightarrow \mathbb{R}$ be two differentiable functions on (a, b) and $c \in(a, b)$. Then for any constant $k \in \mathbb{R}$ the functions $k \cdot f$ and $f+g$ are differentiable on (a, b) and

$$
(k \cdot f)^{\prime}(c)=k \cdot f^{\prime}(c) \quad \text { and } \quad(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c) .
$$

proof

For the product and chain rule, however, we have to work a bit:
Theorem 5 (Product rule) Let $f, g:(a, b) \rightarrow \mathbb{R}$ be two differentiable functions on (a, b) and $c \in(a, b)$. Then

$$
(f \cdot g)^{\prime}(c)=f^{\prime}(c) \cdot g(c)+g^{\prime}(c) \cdot f(c) .
$$

proof Idea: We use the $a-a=0$ trick in the limit definition.

Math 35: Real Analysis Winter 2018

Theorem 6 (Chain rule) Let $g:\left(a_{1}, b_{1}\right) \rightarrow \mathbb{R}$ and $f:\left(a_{2}, b_{2}\right) \rightarrow \mathbb{R}$ be two differentiable functions on the given intervals, such that $g\left(\left(a_{1}, b_{1}\right)\right) \subset\left(a_{2}, b_{2}\right)$. Let $c \in\left(a_{1}, b_{1}\right)$, then $g(c) \in$ $\left(a_{2}, b_{2}\right)$ and we have

$$
(f \circ g)^{\prime}(c)=f^{\prime}(g(c)) \cdot g^{\prime}(c)
$$

proof We use the fact that the derivative is the limit of the difference quotient and apply this to f. Set

$$
F_{p}(y)=\left\{\begin{array}{ccc}
\frac{f(y)-f(p)}{y-p} & \text { if } & y \neq p \\
f^{\prime}(p) & & y=p
\end{array}\right.
$$

Then F_{p} is continuous at p as f is differentiable in p.

$$
\begin{equation*}
\lim _{y \rightarrow p} F_{p}(y)=\lim _{y \rightarrow p} \frac{f(y)-f(p)}{y-p}=f^{\prime}(p) \tag{}
\end{equation*}
$$

Now we use the $\frac{a}{a}=1$ trick in the definition of the derivative of $f \circ g$:

$$
\begin{array}{rll}
(f \circ g)^{\prime}(c) & = & \lim _{x \rightarrow c} \frac{f(g(x))-f(g(c))}{x-c}=\lim _{x \rightarrow c}\left(\frac{f(g(x))-f(g(c))}{g(x)-g(c)}\right) \cdot\left(\frac{g(x)-g(c)}{x-c}\right) \\
y=g(x), p=g(c) & \lim _{x \rightarrow c} F_{g(c)}(g(x)) \cdot\left(\frac{g(x)-g(c)}{x-c}\right)=\lim _{x \rightarrow c} F_{g(c)}(g(x)) \cdot \lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c} \\
& = & F_{g(c)}(g(c)) \cdot g^{\prime}(c)=f^{\prime}(g(c)) \cdot g^{\prime}(c) .
\end{array}
$$

Here

$$
\lim _{x \rightarrow c} F_{g(c)}(g(x))=F_{g(c)}(g(c))=f^{\prime}(g(c))
$$

as g is continuous and $F_{g(c)}$ is continuous by $\left(^{*}\right)$. Hence by Lecture 17, Theorem 5 the function $F_{g(c)} \circ g$ is also continuous and our result follows.

Math 35: Real Analysis
 Winter 2018

Example: (Two horrible continuous functions) Consider the functions

$$
f(x)=\left\{\begin{array}{lll}
x \cdot \sin \left(\frac{1}{x}\right) & \text { if } & \begin{array}{l}
x \neq 0 \\
x=0
\end{array}
\end{array} \quad \text { and } \quad g(x)=\left\{\begin{array}{lll}
x^{2} \cdot \sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\
0 & x=0
\end{array} .\right.\right.
$$

a) Sketch $f(x)$ and $g(x)$ near $x=0$.
b) Use the limit definition of the derivative to show that $f(x)$ is not differentiable in $x=0$. Then show that, however, $g(x)$ is differentiable in $x=0$.
c) Calculate $g^{\prime}(x)$ for $x \neq 0$ using the chain and product rule and show that $g^{\prime}(x)$ is not continuous in $x=0$, even though $g^{\prime}(0)$ exists.

