## Math 35: Real Analysis <br> Winter 2018

Friday $02 / 16 / 18$

## Lecture 19

## Chapter 3.4-Uniform continuity

Result: Uniform continuity is a stronger version of continuity. Functions that are uniformly continuous have a number of nice properties.

Example 1 Recall that by HW 6 for $f:[2,+\infty) \rightarrow \mathbb{R}, x \mapsto f(x)=x^{2}$ is continuous in any point $c$ and satisfies for all $\epsilon>0$ there is $\delta>0$, such that for all $x \in(c-1, c+1)$ we have

$$
|x-c|<\frac{\epsilon}{2 c+1}=\delta(\epsilon) \Rightarrow \underbrace{|x-c|}_{<\frac{\epsilon}{2 c+1}} \cdot \underbrace{|x+c|}_{<2 c+1}=\left|x^{2}-c^{2}\right|<\epsilon
$$

Figure Sketch the function $f$. Then for $\epsilon=\frac{1}{2}$ write down $\delta(\epsilon)$ for $c=2$ and $c=10$ and $c=100$. What do you see? What happens to $\delta(\epsilon)$ if $c$ increases.

Example 2 The function $g:[1,+\infty) \rightarrow \mathbb{R}, x \mapsto g(x)=2 x+1$ is continuous in any point c. Sketch the function $g$. Then for the $\epsilon-\delta$ statement find the $\delta=\delta(\epsilon)>0$ for a given $\epsilon>0$. Does $\delta$ depend on $c$ ?

## Math 35: Real Analysis <br> Winter 2018

A function is uniformly continuous on $(a, b)$ if we can find a $\delta$ that does not depend on the point $c$ in $(a, b)$.

Definition 3 Let $(a, b) \subset \mathbb{R}$ be an interval. Then the function $f:(a, b) \rightarrow \mathbb{R}$ is uniformly continuous if for all $\epsilon>0$ there is $\delta=\delta(\epsilon)>0$, such that for all $x, c \in(a, b)$

$$
|f(x)-f(c)|<\epsilon \quad \text { for all } \quad|x-c|<\delta
$$

Note: Clearly uniform continuity implies continuity. However the other direction is not true.
Example 1: Let $f:[2,+\infty) \rightarrow \mathbb{R}, x \rightarrow f(x)=x^{2}$. Take $\epsilon=1$. We have to show that there are always points $x, c$, such that for any $\delta>0$ we have

$$
|x-c|<\delta \quad \text { but } \quad\left|x^{2}-c^{2}\right| \geq 1
$$

The idea is to go further out if $\delta$ gets smaller. Take $x=\frac{1}{\delta}$ and $c=\frac{1}{\delta}+\frac{\delta}{2}$. Then

$$
|x-c|=\frac{\delta}{2}<\delta \quad \text { but } \quad\left|x^{2}-c^{2}\right|=|x-c| \cdot|x+c|=\frac{\delta}{2}\left(\frac{2}{\delta}+\frac{\delta}{2}\right)>1
$$

Theorem 4 If $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$. Then $f$ is uniformly continuous on $[a, b]$. proof

