Math 35: Real Analysis
 Winter 2018

Lecture 17

Last time: Limit of a function at a point:

Definition 1 (Limit of f at the point c) Let $(a, b) \in \mathbb{R}$ be an open interval and $c \in(a, b)$. Let f be a function, such that $f:(a, b) \rightarrow \mathbb{R}$ or $f:(a, b) \backslash\{c\} \rightarrow \mathbb{R}$. We say that f has limit L in c if for all $\epsilon>0$ there is $\delta=\delta(\epsilon)>0$, such that

$$
|f(x)-L|<\epsilon \quad \text { for all } x \in(a, b) \backslash\{c\}, \text { that satisfy }|x-c|<\delta
$$

In this case we write $\lim _{x \rightarrow c} f(x)=L$.

Theorem 2 a) (Sequence criterion for the limit) The function f has limit L at c if and only if for any sequence $\left(x_{n}\right)_{n} \subset(a, b) \backslash\{c\}$, such that

$$
\lim _{n \rightarrow \infty} x_{n}=c \text { we have } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L
$$

Theorem 3 Let $(a, b) \in \mathbb{R}$ be an open interval and $c \in(a, b)$. Let f be a function, such that $f:(a, b) \rightarrow \mathbb{R}$ or $f:(a, b) \backslash\{c\} \rightarrow \mathbb{R}$. If $\lim _{x \rightarrow c} f(x)=L$ and

$$
m \leq f(x) \leq M \text { for all } x \in(a, b) \backslash\{c\} \text { then } m \leq L \leq M
$$

proof HW 6

Theorem 4 (Squeeze theorem) Let $(a, b) \in \mathbb{R}$ be an open interval and $c \in(a, b)$. Let f, g, h be functions, such that $f, g, h:(a, b) \rightarrow \mathbb{R}$ or $f, g, h:(a, b) \backslash\{c\} \rightarrow \mathbb{R}$. If $\lim _{x \rightarrow c} g(x)=L=\lim _{x \rightarrow c} h(x)$ and

$$
g(x) \leq f(x) \leq h(x) \text { for all } x \in(a, b) \backslash\{c\} \text { then } \lim _{x \rightarrow c} f(x)=L
$$

Example: Use the Squeeze theorem to find the limit $\lim _{x \rightarrow 0} x^{2} \cdot \cos \left(\frac{1}{x^{2}}\right)$. Then sketch $f(x)=x^{2} \cdot \cos \left(\frac{1}{x^{2}}\right)$ and the bounding functions.

Math 35: Real Analysis
 Winter 2018

proof of Theorem 4

Note: We can also define a one-sided limit by restricting our definitions to the left-hand or right-hand side of the point c.

Definition 5 (One sided limits) Let $(a, b) \in \mathbb{R}$ be an open interval and $c \in(a, b)$. Let f be a function, such that $f:(a, b) \rightarrow \mathbb{R}$ or $f:(a, b) \backslash\{c\} \rightarrow \mathbb{R}$.
a) Then f has right-hand limit in c if for all $\epsilon>0$ there is $\delta=\delta(\epsilon)>0$, such that

$$
|f(x)-L|<\epsilon \quad \text { for all } x \in(c, b), \text { that satisfy }|x-c|<\delta
$$

In this case we write $\lim _{x \rightarrow c^{+}} f(x)=L$ or $L=f(c+)$.
b) Then f has left-hand limit in c if for all $\epsilon>0$ there is $\delta=\delta(\epsilon)>0$, such that

$$
|f(x)-L|<\epsilon \quad \text { for all } x \in(a, c), \text { that satisfy }|x-c|<\delta
$$

In this case we write $\lim _{x \rightarrow c^{-}} f(x)=L$ or $L=f(c-)$.

Example: Sketch a function $f(x)$, such that $\lim _{x \rightarrow 1^{-}} f(x)=1$ and $\lim _{x \rightarrow 1^{+}} f(x)=-1$

Math 35: Real Analysis
 Winter 2018

Theorem 6 Let $(a, b) \in \mathbb{R}$ be an open interval and $c \in(a, b)$. Let f be a function, such that $f:(a, b) \rightarrow \mathbb{R}$ or $f:(a, b) \backslash\{c\} \rightarrow \mathbb{R}$. Then

$$
\lim _{x \rightarrow c} f(x)=L \Leftrightarrow \lim _{x \rightarrow c^{+}} f(x)=L=\lim _{x \rightarrow c^{-}} f(x) .
$$

proof

Note: We can also define the limit at infinity. This is the function version of the convergence of a sequence.

Definition 7 (Limit at infinity) Let f be a function, such that $f:(a, \infty) \rightarrow \mathbb{R}$.
a)
b) The function f has limit $+\infty$ at infinity if for all $M>0$ there is $N=N(M)>0$, such that

$$
f(x)>M \quad \text { for all } x \in[N, \infty) .
$$

We write $\lim _{x \rightarrow \infty} f(x)=+\infty$.
b) The function f has limit $-\infty$ at infinity if for all $M>0$ there is $N=N(M)>0$, such that

$$
f(x)<-M \text { for all } x \in[N, \infty)
$$

We write $\lim _{x \rightarrow \infty} f(x)=-\infty$.
Note: In a similar fashion we can define the limit at minus infinity. Using an $M-\delta$ definition we can also define $\lim _{x \rightarrow c} f(x)= \pm \infty$. It is a good exercise to write down this definition.

Math 35: Real Analysis
 Winter 2018

Example: Sketch three functions that describe the situation in Def. 7 a)-c).

Chapter 3.2 - Continuous functions

Outline: Given the definition of a limit of a function it is easy to define continuity. A function is continuous in a point c if $\lim _{x \rightarrow c} f(x)=f(c)$.

Definition 1 Let $f:(a, b) \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$. We say that f is continuous at c if for all $\epsilon>0$ there is $\delta=\delta(\epsilon)>0$, such that

$$
|f(x)-f(c)|<\epsilon \text { for all } x \in(a, b), \text { that satisfy }|x-c|<\delta .
$$

The function is continuous on (a, b) if f is continuous at each point of (a, b).
Note 2 Using one-sided limits we can define continuity on closed intervals.
Note 3 The function is continuous in c if and only if $\lim _{x \rightarrow c} f(x)=f(c)$. Hence all theorems about limits apply to continuous functions with $L=f(c)$.

It follows directly from Ch. 3.1.Theorem 3:
Theorem 4 Let $f, g:(a, b) \rightarrow \mathbb{R}$ be continuous functions and $c \in(a, b)$. Let $k \in \mathbb{R}$ be a constant. Then

$$
k \cdot f \quad, \quad f+g \quad \text { and } \quad f \cdot g
$$

are continuous on (a, b). Furthermore if $g(c) \neq 0$ then $\frac{f}{g}$ is continuous in c.
Theorem 5 Let $g:(a, b) \rightarrow \mathbb{R}$ be continuous functions and $c \in(a, b)$. Let $f:(u, v) \rightarrow \mathbb{R}$ be a continuous function, such that $g((a, b)) \subset(u, v)$. Then

$$
f \circ g:(a, b) \rightarrow \mathbb{R} \quad \text { is a continuous function. }
$$

Math 35: Real Analysis
 Winter 2018

proof Idea: We use the sequence-definition of continuity. For $c \in(a, b)$ let $\left(x_{n}\right)_{n}$ be a sequence, such that

$$
\lim _{n \rightarrow \infty} x_{n}=c .
$$

Then by continuity of g we know that

$$
\lim _{n \rightarrow \infty} g\left(x_{n}\right)=g(c) .
$$

Hence the sequence $\left(g\left(x_{n}\right)\right)_{n}$ is a sequence that converges to $g(c) \subset(u, v)$. By the continuity of f this implies that

$$
\lim _{n \rightarrow \infty} f\left(g\left(x_{n}\right)\right)=f(g(c))=f \circ g(c) .
$$

In total, as our sequence $\left(x_{n}\right)_{n}$ was chosen arbitrarily, this implies that $f \circ g$ is continuous at c. As this is true for any $c \in(a, b)$, it follows that $f \circ g$ is continuous on (a, b).

