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Winter 2018

Friday 02/09/18

Lecture 16
Chapter 3 - Continuity
Chapter 3.1 - Limit of a function
Aim: Give a rigorous definition of a limit of a function at a point.
Definition 1 (Limit of f at the point ¢) Let (a,b) € R be an open interval and ¢ € (a,b).
Let f be a function, such that
f:(a,b) =R or f:(a,b)\{c} =R

i.e. f might or might not be defined in c.
We say that f has limit L in c if for all € > 0 there is § = d(¢) > 0, such that

|f(z) — L| <e forall € (a,b)\{c}, that satisfy |z —c| <.

In this case we write lim,_,. f(z) = L. The function has a limit in ¢, if such a number L exists.
Otherwise we say that the limit does not exist or f does not have a limit at c.

Note: The limit depends on the values of f near ¢. The function does not even have to be
defined in c.

Example: Consider the function given by

2 =1

F:(0,2\{1} > R,z — f(z) =2 o

1.) Simplify f(x) and then plot the function. What should be the limit L = lim,_,; f(z)?
2.) Find 6(%) and §(3). Is it sufficient to make a single calculation?
Then show that f has limit L. Finally, include into your plot a picture explaining Def. 1.
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Theorem 2 Let (a,b) € R be an open interval and ¢ € (a,b). Let f be a function, such that
f:(a,b) =R or f:(a,b)\{c} =R
i.e. f might or might not be defined in c.

a) The function f has limit L at c¢ if and only if for any sequence (z,), C (a,b)\{c}, such
that

lim z, =c¢ wehave lim f(x,)=L.
n—00 n—o0

b) If (xn)n, (zn)n C (a,b)\{c} are two sequences, such that

lim 2, =c= lim 2, and lim f(z,)= L1 # Lo = lim f(z,).
n—oo n—oo n—oo n—o0

Then f has no limit in c.

Example: Plot sin(1) near z = 0. Then use part b) to show that lim,_osin() does not exist.
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proof of Theorem 2 a) ” = ” Idea: If the € — ¢ statement is true, then it is true for all

sequences in the given intervals.
Suppose that lim,_,. f(z) = L. So we know: For all € > 0 there is § = §(e) > 0, such that

|f(z) — L] <e forall ze€ (a,b)\{c}, that satisfy |z —c| <d. (*)

Let (x,)n be a sequence, such that lim,, o x, = ¢. Using the €~ definition of convergence for
sequences (we need a different €) with ¢ = § we know that there is N(d) € IN, such that

7 «< 7 The other direction is a bit trickier. So we know that for any sequence (x,), in
(a,b)\{c}, such that

lim z, =c¢ we have lim f(x,)=L.
n—0o0 n—o0

We have to show that for all € > 0 there is § = d(e) > 0, such that
|f(z) — L| <e forall e (a,b)\{c}, that satisfy |z —c| <. (**)

Suppose that the € — § statement does not hold. Then there is € > 0, such that there is no
d = d(e) > 0, such that (**) is true.

This means that for this € we know that for every 6 > 0 there is at least one 2’ € (a, b)\{c}, such
that

Theorem 2 part b) is a logical consequence of part a):
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From Theorem 2 a) we conclude directly:

Theorem 3 Let f,g: (a,b) = Ror f,g: (a,b)\{c} — R be two functions, such that

lim f(z) = L1 and lim g(x) = Lo.

r—cC Tr—C

Then we have

a) For all s € R we have: lim,_.s- f(x) = s lim,_,. f(z).

b) hm:pﬁc( ( ) + 9(117)) = limg ¢ f($) + hmx%cg(x) = L1 + Ls.

¢) limy.(f(z) - g(x)) = limy—¢ f(x) - limy—c g(x) = Ly - Lo.

d) If g(z) # 0 for all z € (a,b)\{c} and Ly # 0 then
W I@)
) SO T T

proof




