Friday 02/09/18

Lecture 16

Chapter 3 - Continuity

Chapter 3.1 - Limit of a function

Aim: Give a rigorous definition of a limit of a function at a point.

Definition 1 (Limit of f at the point c) Let $(a, b) \in \mathbb{R}$ be an open interval and $c \in (a, b)$. Let f be a function, such that

$$f: (a,b) \to \mathbb{R} \text{ or } f: (a,b) \setminus \{c\} \to \mathbb{R}$$

i.e. f might or might not be defined in c.

We say that f has limit L in c if for all $\epsilon > 0$ there is $\delta = \delta(\epsilon) > 0$, such that

 $|f(x) - L| < \epsilon \quad \text{for all} \ x \in (a,b) \backslash \{c\}, \text{ that satisfy } \ |x - c| < \delta.$

In this case we write $\lim_{x\to c} f(x) = L$. The function has a limit in c, if such a number L exists. Otherwise we say that the limit does not exist or f does not have a limit at c.

Note: The limit depends on the values of f near c. The function does not even have to be defined in c.

Example: Consider the function given by

$$f: (0,2) \setminus \{1\} \to \mathbb{R}, x \mapsto f(x) = 2 \cdot \frac{x^2 - 1}{x - 1}$$

1.) Simplify f(x) and then plot the function. What should be the limit $L = \lim_{x \to 1} f(x)$?

2.) Find $\delta(\frac{1}{8})$ and $\delta(\frac{1}{2})$. Is it sufficient to make a single calculation?

Then show that f has limit L. Finally, include into your plot a picture explaining **Def.** 1.

Friday 02/09/18

Theorem 2 Let $(a, b) \in \mathbb{R}$ be an open interval and $c \in (a, b)$. Let f be a function, such that

$$f:(a,b)\to\mathbb{R}$$
 or $f:(a,b)\setminus\{c\}\to\mathbb{R}$

- i.e. f might or might not be defined in c.
 - a) The function f has limit L at c if and only if for any sequence $(x_n)_n \subset (a,b) \setminus \{c\}$, such that

$$\lim_{n \to \infty} x_n = c \text{ we have } \lim_{n \to \infty} f(x_n) = L.$$

b) If $(x_n)_n, (z_n)_n \subset (a, b) \setminus \{c\}$ are two sequences, such that

$$\lim_{n \to \infty} x_n = c = \lim_{n \to \infty} z_n \text{ and } \lim_{n \to \infty} f(x_n) = L_1 \neq L_2 = \lim_{n \to \infty} f(z_n).$$

Then f has no limit in c.

Example: Plot $\sin(\frac{1}{x})$ near x = 0. Then use part b) to show that $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist.

proof of Theorem 2 a) " \Rightarrow " Idea: If the $\epsilon - \delta$ statement is true, then it is true for all sequences in the given intervals.

Suppose that $\lim_{x\to c} f(x) = L$. So we know: For all $\epsilon > 0$ there is $\delta = \delta(\epsilon) > 0$, such that

 $|f(x) - L| < \epsilon$ for all $x \in (a, b) \setminus \{c\}$, that satisfy $|x - c| < \delta$. (*)

Let $(x_n)_n$ be a sequence, such that $\lim_{n\to\infty} x_n = c$. Using the ϵ' - definition of convergence for sequences (we need a different ϵ) with $\epsilon' = \delta$ we know that there is $N(\delta) \in \mathbb{N}$, such that

" \Leftarrow " The other direction is a bit trickier. So we know that for any sequence $(x_n)_n$ in $(a,b)\setminus\{c\}$, such that

$$\lim_{n \to \infty} x_n = c \text{ we have } \lim_{n \to \infty} f(x_n) = L.$$

We have to show that for all $\epsilon > 0$ there is $\delta = \delta(\epsilon) > 0$, such that

 $|f(x) - L| < \epsilon$ for all $x \in (a, b) \setminus \{c\}$, that satisfy $|x - c| < \delta$. (**)

Suppose that the $\epsilon - \delta$ statement does not hold. Then there is $\epsilon > 0$, such that there is **no** $\delta = \delta(\epsilon) > 0$, such that (**) is true.

This means that for this ϵ we know that for every $\delta > 0$ there is at least one $x' \in (a, b) \setminus \{c\}$, such that

Theorem 2 part b) is a logical consequence of part a):

From **Theorem 2** a) we conclude directly:

Theorem 3 Let $f, g: (a, b) \to \mathbb{R}$ or $f, g: (a, b) \setminus \{c\} \to \mathbb{R}$ be two functions, such that

$$\lim_{x \to c} f(x) = L_1 \text{ and } \lim_{x \to c} g(x) = L_2$$

Then we have

- a) For all $s \in \mathbb{R}$ we have: $\lim_{x \to c} s \cdot f(x) = s \cdot \lim_{x \to c} f(x)$.
- b) $\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = L_1 + L_2.$
- c) $\lim_{x\to c} (f(x) \cdot g(x)) = \lim_{x\to c} f(x) \cdot \lim_{x\to c} g(x) = L_1 \cdot L_2.$
- d) If $g(x) \neq 0$ for all $x \in (a, b) \setminus \{c\}$ and $L_2 \neq 0$ then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} f(x) \cdot \lim_{x \to c} \frac{1}{g(x)} = \frac{L_1}{L_2}.$$

proof