## Math 35: Real Analysis <br> Winter 2018

Friday 02/09/18

## Lecture 16

## Chapter 3 - Continuity

## Chapter 3.1-Limit of a function

Aim: Give a rigorous definition of a limit of a function at a point.

Definition 1 (Limit of $f$ at the point $c$ ) Let $(a, b) \in \mathbb{R}$ be an open interval and $c \in(a, b)$. Let $f$ be a function, such that

$$
f:(a, b) \rightarrow \mathbb{R} \text { or } f:(a, b) \backslash\{c\} \rightarrow \mathbb{R}
$$

i.e. $f$ might or might not be defined in $c$.

We say that $f$ has limit $L$ in $c$ if for all $\epsilon>0$ there is $\delta=\delta(\epsilon)>0$, such that

$$
|f(x)-L|<\epsilon \text { for all } x \in(a, b) \backslash\{c\}, \text { that satisfy }|x-c|<\delta .
$$

In this case we write $\lim _{x \rightarrow c} f(x)=L$. The function has a limit in $c$, if such a number $L$ exists. Otherwise we say that the limit does not exist or $f$ does not have a limit at $c$.

Note: The limit depends on the values of $f$ near $c$. The function does not even have to be defined in $c$.

Example: Consider the function given by

$$
f:(0,2) \backslash\{1\} \rightarrow \mathbb{R}, x \mapsto f(x)=2 \cdot \frac{x^{2}-1}{x-1}
$$

1.) Simplify $f(x)$ and then plot the function. What should be the limit $L=\lim _{x \rightarrow 1} f(x)$ ?
2.) Find $\delta\left(\frac{1}{8}\right)$ and $\delta\left(\frac{1}{2}\right)$. Is it sufficient to make a single calculation?

Then show that $f$ has limit $L$. Finally, include into your plot a picture explaining Def. 1.

## Math 35: Real Analysis Winter 2018

Theorem 2 Let $(a, b) \in \mathbb{R}$ be an open interval and $c \in(a, b)$. Let $f$ be a function, such that

$$
f:(a, b) \rightarrow \mathbb{R} \text { or } f:(a, b) \backslash\{c\} \rightarrow \mathbb{R}
$$

i.e. $f$ might or might not be defined in $c$.
a) The function $f$ has limit $L$ at $c$ if and only if for any sequence $\left(x_{n}\right)_{n} \subset(a, b) \backslash\{c\}$, such that

$$
\lim _{n \rightarrow \infty} x_{n}=c \text { we have } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L
$$

b) If $\left(x_{n}\right)_{n},\left(z_{n}\right)_{n} \subset(a, b) \backslash\{c\}$ are two sequences, such that

$$
\lim _{n \rightarrow \infty} x_{n}=c=\lim _{n \rightarrow \infty} z_{n} \text { and } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L_{1} \neq L_{2}=\lim _{n \rightarrow \infty} f\left(z_{n}\right) .
$$

Then $f$ has no limit in $c$.
Example: Plot $\sin \left(\frac{1}{x}\right)$ near $x=0$. Then use part b) to show that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist.

# Math 35: Real Analysis <br> Winter 2018 

Friday $02 / 09 / 18$
proof of Theorem 2 a) " $\Rightarrow$ "Idea: If the $\epsilon-\delta$ statement is true, then it is true for all sequences in the given intervals.
Suppose that $\lim _{x \rightarrow c} f(x)=L$. So we know: For all $\epsilon>0$ there is $\delta=\delta(\epsilon)>0$, such that

$$
\begin{equation*}
|f(x)-L|<\epsilon \text { for all } x \in(a, b) \backslash\{c\}, \text { that satisfy }|x-c|<\delta \tag{*}
\end{equation*}
$$

Let $\left(x_{n}\right)_{n}$ be a sequence, such that $\lim _{n \rightarrow \infty} x_{n}=c$. Using the $\epsilon^{\prime}$ - definition of convergence for sequences (we need a different $\epsilon$ ) with $\epsilon^{\prime}=\delta$ we know that there is $N(\delta) \in \mathbb{N}$, such that
$" \Leftarrow "$ The other direction is a bit trickier. So we know that for any sequence $\left(x_{n}\right)_{n}$ in $(a, b) \backslash\{c\}$, such that

$$
\lim _{n \rightarrow \infty} x_{n}=c \text { we have } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L
$$

We have to show that for all $\epsilon>0$ there is $\delta=\delta(\epsilon)>0$, such that

$$
|f(x)-L|<\epsilon \text { for all } x \in(a, b) \backslash\{c\}, \text { that satisfy }|x-c|<\delta . \quad(* *)
$$

Suppose that the $\epsilon-\delta$ statement does not hold. Then there is $\epsilon>0$, such that there is no $\delta=\delta(\epsilon)>0$, such that $\left({ }^{* *}\right)$ is true.
This means that for this $\epsilon$ we know that for every $\delta>0$ there is at least one $x^{\prime} \in(a, b) \backslash\{c\}$, such that

Theorem 2 part b) is a logical consequence of part a):

## Math 35: Real Analysis Winter 2018

From Theorem 2 a) we conclude directly:
Theorem 3 Let $f, g:(a, b) \rightarrow \mathbb{R}$ or $f, g:(a, b) \backslash\{c\} \rightarrow \mathbb{R}$ be two functions, such that

$$
\lim _{x \rightarrow c} f(x)=L_{1} \text { and } \lim _{x \rightarrow c} g(x)=L_{2} .
$$

Then we have
a) For all $s \in \mathbb{R}$ we have: $\lim _{x \rightarrow c} s \cdot f(x)=s \cdot \lim _{x \rightarrow c} f(x)$.
b) $\lim _{x \rightarrow c}(f(x)+g(x))=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=L_{1}+L_{2}$.
c) $\lim _{x \rightarrow c}(f(x) \cdot g(x))=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)=L_{1} \cdot L_{2}$.
d) If $g(x) \neq 0$ for all $x \in(a, b) \backslash\{c\}$ and $L_{2} \neq 0$ then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} \frac{1}{g(x)}=\frac{L_{1}}{L_{2}} .
$$

proof

