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Lecture 16

Chapter 3 - Continuity

Chapter 3.1 - Limit of a function

Aim: Give a rigorous de�nition of a limit of a function at a point.

De�nition 1 (Limit of f at the point c) Let (a, b) ∈ R be an open interval and c ∈ (a, b).
Let f be a function, such that

f : (a, b)→ R or f : (a, b)\{c} → R

i.e. f might or might not be de�ned in c.
We say that f has limit L in c if for all ε > 0 there is δ = δ(ε) > 0, such that

|f(x)− L| < ε for all x ∈ (a, b)\{c}, that satisfy |x− c| < δ.

In this case we write limx→c f(x) = L. The function has a limit in c, if such a number L exists.
Otherwise we say that the limit does not exist or f does not have a limit at c.

Note: The limit depends on the values of f near c. The function does not even have to be
de�ned in c.

Example: Consider the function given by

f : (0, 2)\{1} → R, x 7→ f(x) = 2 · x
2 − 1

x− 1

1.) Simplify f(x) and then plot the function. What should be the limit L = limx→1 f(x)?
2.) Find δ(18) and δ(

1
2). Is it su�cient to make a single calculation?

Then show that f has limit L. Finally, include into your plot a picture explaining Def. 1.
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Theorem 2 Let (a, b) ∈ R be an open interval and c ∈ (a, b). Let f be a function, such that

f : (a, b)→ R or f : (a, b)\{c} → R

i.e. f might or might not be de�ned in c.

a) The function f has limit L at c if and only if for any sequence (xn)n ⊂ (a, b)\{c}, such
that

lim
n→∞

xn = c we have lim
n→∞

f(xn) = L.

b) If (xn)n, (zn)n ⊂ (a, b)\{c} are two sequences, such that

lim
n→∞

xn = c = lim
n→∞

zn and lim
n→∞

f(xn) = L1 6= L2 = lim
n→∞

f(zn).

Then f has no limit in c.

Example: Plot sin( 1x) near x = 0. Then use part b) to show that limx→0 sin(
1
x) does not exist.
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proof of Theorem 2 a) ” ⇒ ” Idea: If the ε − δ statement is true, then it is true for all
sequences in the given intervals.
Suppose that limx→c f(x) = L. So we know: For all ε > 0 there is δ = δ(ε) > 0, such that

|f(x)− L| < ε for all x ∈ (a, b)\{c}, that satisfy |x− c| < δ. (*)

Let (xn)n be a sequence, such that limn→∞ xn = c. Using the ε′- de�nition of convergence for
sequences (we need a di�erent ε) with ε′ = δ we know that there is N(δ) ∈ N, such that

” ⇐ ” The other direction is a bit trickier. So we know that for any sequence (xn)n in
(a, b)\{c}, such that

lim
n→∞

xn = c we have lim
n→∞

f(xn) = L.

We have to show that for all ε > 0 there is δ = δ(ε) > 0, such that

|f(x)− L| < ε for all x ∈ (a, b)\{c}, that satisfy |x− c| < δ. (**)

Suppose that the ε − δ statement does not hold. Then there is ε > 0, such that there is no
δ = δ(ε) > 0, such that (**) is true.
This means that for this ε we know that for every δ > 0 there is at least one x′ ∈ (a, b)\{c}, such
that

Theorem 2 part b) is a logical consequence of part a):
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From Theorem 2 a) we conclude directly:

Theorem 3 Let f, g : (a, b)→ R or f, g : (a, b)\{c} → R be two functions, such that

lim
x→c

f(x) = L1 and lim
x→c

g(x) = L2.

Then we have

a) For all s ∈ R we have: limx→c s · f(x) = s · limx→c f(x).

b) limx→c(f(x) + g(x)) = limx→c f(x) + limx→c g(x) = L1 + L2.

c) limx→c(f(x) · g(x)) = limx→c f(x) · limx→c g(x) = L1 · L2.

d) If g(x) 6= 0 for all x ∈ (a, b)\{c} and L2 6= 0 then

lim
x→c

f(x)

g(x)
= lim

x→c
f(x) · lim

x→c

1

g(x)
=
L1

L2
.

proof


