Friday 02/02/18

Lecture 13

Outline: We give a number of tests that assert the convergence or divergence of infinite series.

Theorem 10 (Geometric series) Suppose that $a \neq 0$ then the geometric series $\sum_{k=0}^{\infty} a \cdot x^k$ diverges if $|x| \ge 0$ and converges if |x| < 1. In the latter case we have:

$$\sum_{k=0}^{\infty} a \cdot x^k = \frac{a}{1-x}.$$

proof: 1.) $|x| \ge 1$: Then the sequence $(a \cdot x^k)_k$

2.) |x| < 1: Then by the formula for the geometric sum

Theorem 11 (Ratio test for series) Let $(a_k)_k$ be a sequence, such that $a_k \neq 0$ for all $k \geq K \in \mathbb{N}$. To test the series $\sum_{k=1}^{\infty} a_k$ for convergence we evaluate the limit

$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = L.$$

There are three possibilities:

- 1.) If L < 1 then the series converges.
- 2.) If L > 1 then the series diverges.
- 3.) If L = 1 then the test is inconclusive.

proof 1.) If L < 1 then the series converges:

Idea: We prove the absolute convergence of the series by comparing it with a suitable geometric series.

As $\lim_{k\to\infty} \left| \frac{a_{k+1}}{a_k} \right| = L$ and L < 1 we know that for all $\epsilon > 0$ there is $N = N(\epsilon) \ge K$, such that

$$\left| \left| \frac{a_{k+1}}{a_k} \right| - L \right| < \epsilon \Leftrightarrow L - \epsilon < \left| \frac{a_{k+1}}{a_k} \right| < L + \epsilon \text{ for all } k \ge N.$$

Especially, by choosing a sufficiently small ϵ we can assure that there is an $L < r < 1 \in \mathbb{R}^+$, such that

$$0 < \left| \frac{a_{k+1}}{a_k} \right| < r < 1 \quad \text{for all} \ k \ge N$$

(Take for example $\epsilon = \min\{\frac{L}{2}, \frac{1-L}{2}\}$). Hence starting at k = N we know that

We conclude that

$$\sum_{k=N}^{N+n} |a_k| = |a_N| + |a_{N+1}| + |a_{N+2}| + \dots + |a_{N+n}|$$

$$\leq |a_N| + |a_N| \cdot r + |a_N| \cdot r^2 + \dots + |a_N| \cdot r^n = \sum_{k=0}^n |a_N| \cdot r^k.$$

Hence in total we obtain that

$$\sum_{k=N}^{\infty} |a_k| \le \sum_{k=0}^{\infty} |a_N| \cdot r^k = \frac{|a_N|}{1-r}.$$

Hence by the **Comparison test** we know that the series $\sum_{k=1}^{\infty} |a_k|$ converges. This means that $\sum_{k=1}^{\infty} a_k$ converges absolutely.

2.) The series diverges for L > 1.

In this case it is sufficient to note that $\lim_{k\to\infty} a_k \neq 0$. Then it follows from **Theorem 6** that the series $\sum_{k=N}^{\infty} |a_k|$ can not converge.

As in Case 1.) we know that again by the ϵ -criterion of convergence we can assume that there is $R \in \mathbb{R}^+$, such that

$$\left|\frac{a_{k+1}}{a_k}\right| > R > 1 \quad \text{for all} \ k \ge N \ge K.$$

Hence

$$|a_{k+1}| > R \cdot |a_k| > |a_k| \quad \text{for all } k \ge N \ge K.$$

In a similar fashion as in part 1.) we conclude that

$$|a_k| > |a_N| \neq 0$$
 for all $k \ge N \ge K$.

Hence $\lim_{k\to\infty} |a_k| \neq 0 \Leftrightarrow \lim_{k\to\infty} a_k \neq 0$ and we can conclude that $\sum_{k=N}^{\infty} a_k$ is divergent.

Examples: For which $x \in \mathbb{R}$ are the following series are convergent or divergent.

a)
$$\sum_{k=1}^{\infty} \frac{x^k}{k^2 + k}$$
 b)
$$\sum_{k=1}^{\infty} \frac{x^k}{k!}$$

Theorem 12 (Root test for series) Let $(a_k)_k$ be a sequence. To test the series $\sum_{k=1}^{\infty} a_k$ for convergence we evaluate the limit

$$\lim_{k \to \infty} \left(|a_k| \right)^{\frac{1}{k}} = L.$$

There are three possibilities:

1.) If L < 1 then the series converges.

2.) If L > 1 then the series diverges.

3.) If L = 1 then the test is inconclusive.

proof This proof is very similar to the proof of the ratio test. Here the comparison with a suitable geometric series is even easier.

1.) If L < 1 then the series converges:

We know that

$$\lim_{k \to \infty} |a_k|^{\frac{1}{k}} = L < 1.$$

Especially, by choosing a sufficiently small ϵ we can assure that there is an $r \in \mathbb{R}^+$ and $N \in \mathbb{N}$ such that

$$|a_k|^{\frac{1}{k}} < r < 1$$
 for all $k \ge N$.

This implies that $|a_k| < r^k$ for all $k \ge N$. Hence

2.) If L > 1 then the series diverges:

As in the proof of the ratio test it is sufficient to note that $\lim_{k\to\infty} a_k \neq 0$. As in Case 1.) we know that again by the ϵ -criterion of convergence we can assume that there is $R > 1 \in \mathbb{R}$, such that

$$|a_k|^{\frac{1}{k}} > R > 1 \Rightarrow |a_k| > R^k > 1$$
 for all $k \ge N \ge K$.

Especially as R^k is increasing we have that

$$\lim_{k \to \infty} |a_k| \ge \lim_{k \to \infty} R^k = \infty.$$

Hence $\lim_{k\to\infty} a_k$ does not exist and we conclude that the series $\sum_{k=1}^{\infty} a_k$ diverges.

Example: Show that the we can easily use the root test to show that the following series converges but the ratio test is complicated.

$$\sum_{k=1}^{\infty} \left(\frac{k}{k^2+1}\right)^k$$

Solution: With the Root test we obtain:

$$\lim_{k \to \infty} |a_k|^{\frac{1}{k}} = \lim_{k \to \infty} \left(\frac{k}{k^2 + 1}\right)^{\frac{k}{k}} = \lim_{k \to \infty} \frac{k}{k^2 + 1} = L = 0.$$

However with the Ratio test we get

$$0 \leq \frac{|a_{k+1}|}{|a_k|} = \left(\frac{k+1}{(k+1)^2+1}\right)^{k+1} \cdot \left(\frac{k^2+1}{k}\right)^k = \left(\frac{k+1}{(k+1)^2+1}\right) \cdot \left(\frac{k+1}{(k+1)^2+1} \cdot \frac{k^2+1}{k}\right)^k$$
$$= \left(\frac{k+1}{k^2+2k+2}\right) \cdot \left(\underbrace{\frac{k^3+k^2+k+1}{k^3+2k^2+2k}}_{\leq 1}\right)^k \leq \frac{k+1}{k^2+2k+2}.$$

This is true as for $k \ge 1$

$$r = \frac{k^3 + k^2 + k + 1}{k^3 + 2k^2 + 2k} \le 1 \Leftrightarrow k^3 + k^2 + k + 1 \le k^3 + 2k^2 + 2k \Leftrightarrow 1 \le k^2 + k.$$

Furthermore $r \leq 1$ implies that $r^k \leq 1$ for all $k \geq 1$. Hence by the **Squeeze theorem** we get

$$0 \le \lim_{k \to \infty} 0 \le \lim_{k \to \infty} \frac{|a_{k+1}|}{|a_k|} \le \lim_{k \to \infty} \frac{k+1}{k^2 + 2k + 2} \le 0$$

Hence $\lim_{k\to\infty} \frac{|a_{k+1}|}{|a_k|} = L = 0 < 1$ and the series also converges by the **Ratio test**. However, the calculations were much easier with the root test.