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Lecture 12

Corollary Consider the series
∑∞

k=1
1
ks , where s ∈ (0,∞). Then

a)
∑∞

k=1
1
ks diverges for s ∈ (0, 1].

b)
∑∞

k=1
1
ks converges for s ∈ N, s ≥ 2.

proof:

Note: Finding the exact value of these series is not easy. Using Fourier series one can show
that

∞∑
k=1

1

k2
=
π2

6
(Euler, 1735)

∞∑
k=1

1

k4
=
π4

90
and

∞∑
k=1

1

k6
=

π6

945

Theorem 9 (Alternating series) Let (ak)k be a decreasing sequence, such that

ak ≥ 0 and lim
k→∞

ak = 0.

Then the series
∞∑
k=1

(−1)k+1 · ak converges.
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Figure: Draw a dot plot of the sequences
(
1
k

)
k
and

(
− 1

k

)
k
. Then of

(∑n
k=1(−1)k+1 · 1k

)
n
.

Use Theorem 9 to show that
∑∞

k=1(−1)k+1 · 1k converges. Do you know the limit?

proof of Theorem 9 Let (Sn)n be the sequence given by Sn :=
∑n

k=1(−1)k+1 · ak. We �rst
show that (S2n)n and (S2n+1)n converge. Then we show that they have the same limit. This
implies that (Sn)n converges.

1.) The sequences (S2n)n and (S2n+1)n converges

We show that these two sequences are both monotone and bounded. This means they converge
by Ch.2.2.Theorem 1.
(S2n)n is increasing: We have to show that for all n ≥ 1: S2(n+1) ≥ S2n ⇔ S2(n+1) − S2n ≥ 0.
By the de�nition of these two sums we have

S2(n+1) − S2n =

2n+2∑
k=2n+1

(−1)k+1 · ak = −a2n+2 + a2n+1 ≥ 0 as a2n+1 ≥ a2n+2.

The latter is true as (an)n is a decreasing sequence. Hence (S2n)n is an increasing sequence.
(S2n+1)n is decreasing: Similarly we �nd that for all n ≥ 0:

S2(n+1)+1 − S2n+1 =

2n+3∑
k=2n+2

(−1)k+1 · ak = a2n+3 − a2n+2 ≤ 0 as a2n+3 ≤ a2n+2.

Hence (S2n+1)n is a decreasing sequence.
It remains to show that the two sequences are bounded. To this end we note that S1 ≥ S2 and
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for all n ≥ 1:
S2n+1 − S2n = a2n+1 ≥ 0⇔ S2n+1 ≥ S2n

Hence we have

This implies that

S2 ≤ S2n ≤ S1 and S2 ≤ S2n+1 ≤ S1 for all n.

Hence the two sequences are also bounded. In total we get that (S2n)n and (S2n+1)n converge.
We set limn→∞ S2n = SE (even indices) and limn→∞ S2n+1 = SO (odd indices). It remains to
show that

2.) limn→∞ S2n = SE = SO = limn→∞ S2n+1.
By the limit laws we have

SO − SE = lim
n→∞

S2n+1 − lim
n→∞

S2n = lim
n→∞

(S2n+1 − S2n) = lim
n→∞

a2n+1 = 0.

Hence both subsequences have the same limit SO = SE = S.
We now prove that limn→∞ Sn = S: We know by the ε criterion for convergence:


