Math 35: Real Analysis
 Winter 2018

Lecture 12

Corollary Consider the series $\sum_{k=1}^{\infty} \frac{1}{k^{s}}$, where $s \in(0, \infty)$. Then
a) $\sum_{k=1}^{\infty} \frac{1}{k^{s}}$ diverges for $s \in(0,1]$.
b) $\sum_{k=1}^{\infty} \frac{1}{k^{s}}$ converges for $s \in \mathbb{N}, s \geq 2$.
proof:

Note: Finding the exact value of these series is not easy. Using Fourier series one can show that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \text { (Euler, 1735) } \sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90} \text { and } \sum_{k=1}^{\infty} \frac{1}{k^{6}}=\frac{\pi^{6}}{945}
$$

Theorem 9 (Alternating series) Let $\left(a_{k}\right)_{k}$ be a decreasing sequence, such that

$$
a_{k} \geq 0 \text { and } \lim _{k \rightarrow \infty} a_{k}=0
$$

Then the series

$$
\sum_{k=1}^{\infty}(-1)^{k+1} \cdot a_{k} \quad \text { converges. }
$$

Math 35: Real Analysis
 Winter 2018

Figure: Draw a dot plot of the sequences $\left(\frac{1}{k}\right)_{k}$ and $\left(-\frac{1}{k}\right)_{k}$. Then of $\left(\sum_{k=1}^{n}(-1)^{k+1} \cdot \frac{1}{k}\right)_{n}$. Use Theorem 9 to show that $\sum_{k=1}^{\infty}(-1)^{k+1} \cdot \frac{1}{k}$ converges. Do you know the limit?
proof of Theorem 9 Let $\left(S_{n}\right)_{n}$ be the sequence given by $S_{n}:=\sum_{k=1}^{n}(-1)^{k+1} \cdot a_{k}$. We first show that $\left(S_{2 n}\right)_{n}$ and $\left(S_{2 n+1}\right)_{n}$ converge. Then we show that they have the same limit. This implies that $\left(S_{n}\right)_{n}$ converges.
1.) The sequences $\left(S_{2 n}\right)_{n}$ and $\left(S_{2 n+1}\right)_{n}$ converges

We show that these two sequences are both monotone and bounded. This means they converge by Ch.2.2.Theorem 1 .
$\left(S_{2 n}\right)_{n}$ is increasing: We have to show that for all $n \geq 1: S_{2(n+1)} \geq S_{2 n} \Leftrightarrow S_{2(n+1)}-S_{2 n} \geq 0$. By the definition of these two sums we have

$$
S_{2(n+1)}-S_{2 n}=\sum_{k=2 n+1}^{2 n+2}(-1)^{k+1} \cdot a_{k}=-a_{2 n+2}+a_{2 n+1} \geq 0 \quad \text { as } \quad a_{2 n+1} \geq a_{2 n+2} .
$$

The latter is true as $\left(a_{n}\right)_{n}$ is a decreasing sequence. Hence $\left(S_{2 n}\right)_{n}$ is an increasing sequence. $\left(S_{2 n+1}\right)_{n}$ is decreasing: Similarly we find that for all $n \geq 0$:

$$
S_{2(n+1)+1}-S_{2 n+1}=\sum_{k=2 n+2}^{2 n+3}(-1)^{k+1} \cdot a_{k}=a_{2 n+3}-a_{2 n+2} \leq 0 \text { as } a_{2 n+3} \leq a_{2 n+2} .
$$

Hence $\left(S_{2 n+1}\right)_{n}$ is a decreasing sequence.
It remains to show that the two sequences are bounded. To this end we note that $S_{1} \geq S_{2}$ and

Math 35: Real Analysis Winter 2018

for all $n \geq 1$:

$$
S_{2 n+1}-S_{2 n}=a_{2 n+1} \geq 0 \Leftrightarrow S_{2 n+1} \geq S_{2 n}
$$

Hence we have

This implies that

$$
S_{2} \leq S_{2 n} \leq S_{1} \text { and } S_{2} \leq S_{2 n+1} \leq S_{1} \text { for all } n
$$

Hence the two sequences are also bounded. In total we get that $\left(S_{2 n}\right)_{n}$ and $\left(S_{2 n+1}\right)_{n}$ converge. We set $\lim _{n \rightarrow \infty} S_{2 n}=S^{E}$ (even indices) and $\lim _{n \rightarrow \infty} S_{2 n+1}=S^{O}$ (odd indices). It remains to show that
2.) $\lim _{n \rightarrow \infty} S_{2 n}=S^{E}=S^{O}=\lim _{n \rightarrow \infty} S_{2 n+1}$.

By the limit laws we have

$$
S^{O}-S^{E}=\lim _{n \rightarrow \infty} S_{2 n+1}-\lim _{n \rightarrow \infty} S_{2 n}=\lim _{n \rightarrow \infty}\left(S_{2 n+1}-S_{2 n}\right)=\lim _{n \rightarrow \infty} a_{2 n+1}=0
$$

Hence both subsequences have the same limit $S^{O}=S^{E}=S$.
We now prove that $\lim _{n \rightarrow \infty} S_{n}=S$: We know by the ϵ criterion for convergence:

