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Lecture 10

Aim: A sequence converges if and only if its elements approach each other "su�ciently".
This is a consequence of the completeness of R.

De�nition 3 A sequence (an)n is called a Cauchy sequence if for each ε > 0 there is an
N(ε) ∈ N, such that

|an − am| < ε for all n,m ≥ N(ε).

Theorem 4 Every Cauchy sequence is bounded.

proof Idea: As for 2.1.Theorem 7. The �rst n values are bounded and the remaining lie
in a neighborhood of the limit.
1.) Take ε = 1. We know that there is an N(1) = N ∈ N, such that

|an − am| < 1 for all n,m ≥ N(1) = N.

In particular,

|aN − am| < 1⇔ am ∈ (aN − 1, aN + 1) for all m ≥ N(1) = N.

Hence for all m ≥ N we have that |am| ≤ max{|aN − 1|, |aN + 1|}.
2.) As there are only �nitely many remaining elements, we know that

M = max{|an|, n ∈ {1, 2, . . . , N − 1} exists.

In total we obtain by 1.) and 2.) that |an| ≤ max{|aN − 1|, |aN + 1|,M} for all n ∈ N. This
proves our statement. �

Note: The condition that this theorem is valid for all n,m ≥ N(ε) can not be replaced by
the condition that limn→∞ an − an+1 = 0.
The counterexample is the sequence (an)n where an =

∑n
k=1

1
k .

Exercise 5: a) For the above sequence (an)n show that limn→∞ an − an+1 = 0.
b) Compare the sequence with

∫ n
1

1
x+1 dx to show that limn→∞ an =∞.

Exercise 6: Show that the sequence (an)n where an =
∑n

k=1
1

k·(k+1) is a Cauchy sequence.

a) Find A,B, such that 1
k·(k+1) =

A
k + B

k+1 .

Solution: 1
k·(k+1) =

1
k −

1
k+1 .
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b) Use the expression from a) to �nd an upper bound for |an−am| where without loss of generality
n > m.
Solution:

|
n∑
k=1

1

k · (k + 1)
−

m∑
k=1

1

k · (k + 1)
| =

n∑
k=m+1

1

k · (k + 1)
=

n∑
k=m+1

1

k
− 1

k + 1

telescoping sum
=

n∑
k=m+1

1

k
−

n∑
k=m+1

1

k + 1
=

1

m+ 1
− 1

n+ 1
≤ 1

m
(*)

c) Conclude that (an)n is a Cauchy sequence.
Solution: For a given ε > 0 we know there is 1

N such that 1
N < ε. Then (*) implies that

|an − am| <
1

N
< ε for all m,n ≥ N = N(ε).

Hence (an)n is a Cauchy sequence.

Theorem 7 If (an)n is a converging sequence with limit a, such that

an ∈ [u, v] for all n ∈ N .

Then a ∈ [u, v].

proof: We only prove the inequality a ≤ v. The inequality for the lower bound follows in
the same way.
Suppose that a > v, then a− v > 0. Take ε = a−v

2 .

Then there is an N = N(ε) ∈ N, such that

|an − a| < ε⇔ a− ε < an < a+ ε for all n ≥ N.

Hence v < a+v
2 < an, a contradiction. This implies that a ≤ v. �

Theorem 8 A sequence (an)n is convergent if and only if it is a Cauchy sequence.

proof: ”⇐ ” Idea: As for monotone sequences the limit is an extremum.
So we know that (an)n is a Cauchy sequence. We de�ne a new sequence (bn)n where

bn := inf{ak, k ≥ n}
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Figure 1: Plot of the sequence (an)n, where an := cos(n)
n (red) and the sequence (bn)n, where

bn := inf{ak, k ≥ n} (blue).

1.) We show that (bn)n converges

We write the set of elements of (an)n as

A1 = {ak, k ≥ 1} and set An = {ak, k ≥ n}.

We know that the sequence (an)n is bounded in some interval [u, v] by Theorem 4. Hence

u ≤ inf(A1) ≤ sup(A1) ≤ v

As An ⊂ A1 = {ak, k ≥ 1} this implies that for all n ∈ N

u ≤ inf(A1) ≤ inf(An) = bn ≤ sup(An) ≤ sup(A1) ≤ v.

Hence the sequence (bn)n is bounded. Furthermore as An+1 ⊂ An we have by the de�nition of
bn that bn ≤ bn+1 for all n ∈ N. Hence (bn)n is a monotone sequence. Theorem 1 implies that
it is a converging sequence. Let b = limn→∞ bn

2.) We show that b = limn→∞ an
Fix ε > 0. By the de�nition of the Cauchy sequence we know that there is an N = N(ε) ∈ N,
such that

|an − am| < ε for all n,m ≥ N

In particular,

|aN − am| < ε⇔ am ∈ (aN − ε, aN + ε) for all n ≥ N. (*)
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By the de�nition of bm that means that

bm ∈ [aN − ε, aN + ε] for all m ≥ N.

That implies that b ∈ [aN − ε, aN + ε] by Theorem 7. By (*) we have that both b and the an
for n ≥ N lie in the same interval around aN . Hence

|an − b| ≤ 2ε < 3ε for all n ≥ N.

As ε was chosen arbitrarily this implies that (an)n converges to b.

” ⇒ ” To show: If (an)n converges then (an)n is a Cauchy sequence. This can be proven
with the 4 6=:

Fix ε > 0. We know that for ε
2 > 0 there is N = N( ε2) ∈ N, such that

|an − a| <
ε

2
for all n ≥ N

Hence for all n,m ≥ N

|an − am| = |(an − a) + (a− am)|
46=
≤ |an − a|+ |a− am| < ε

Hence (an)n is a Cauchy sequence. This concludes our proof. �


