Math 35: Real Analysis Winter 2018

Friday 01/05/18

Axioms for the real numbers

The following axioms define the real numbers completely. They are phrased as in the book.

Definition 1.1 A field is a non-empty set F of objects that has two operations defined on it. These operations are called addition and multiplication and are denoted in the usual way. Addition and multiplication satisfy the following properties:

Addition:

- 1. For all $x, y \in F, x + y \in F$.
- **2.** For all $x, y \in F, x + y = y + x$. (commutative law)
- **3.** For all $x, y, z \in F$, (x + y) + z = x + (y + z). (associative law)
- 4. F contains an element 0 such that x + 0 = x for all $x \in F$. (0 is the neutral element)
- **5.** For all $x \in F$ there is $y \in F$, such that x + y = 0. (inverse elements)

Note: Properties 1.-5. are equivalent to (F, +) being a commutative group.

Multiplication:

- **6.** For all $x, y \in F, x \cdot y \in F$.
- 7. For all $x, y \in F, x \cdot y = y \cdot x$. (commutative law)
- 8. For all $x, y, z \in F, (x \cdot y) \cdot z = x \cdot (y \cdot z)$. (associative law)
- **9.** F contains an element $1 \neq 0$ such that $x \cdot 1 = x$ for all $x \in F$. (1 is the neutral element)
- **10.** For all $x \in F \setminus \{0\}$ there is $y \in F \setminus \{0\}$, such that $x \cdot y = 1$. (inverse elements)

Distributive law:

11. For all $x, y, z \in F$, $(x + y) \cdot z = x \cdot z + y \cdot z$.

Note: Properties 6.-11. imply that $(F \setminus \{0\}, \cdot)$ is a group.

Math 35: Real Analysis Winter 2018

Definition 1.2 An order < on a set S is a relation that satisfies the following two properties:

- **1.** If $x, y \in S$ then exactly one of the three cases is true: x < y, x = y, or x > y.
- **2.** For all $x, y, z \in S$: If x < y and y < z then x < z.

An ordered set is a set with an order < defined on it.

Definition 1.3 An ordered field is a field F with an order < with the following additional properties:

1. If x > 0 and y > 0 then x + y > 0.

- **2.** If x > 0 and y > 0 then $x \cdot y > 0$.
- **3.** x < y if and only if y x > 0.

 \mathbb{R} is an ordered field that additionally satisfies the **Completeness Axiom**.

Definition 1.14.a) Let $S \subset \mathbb{R}$ be a non-empty set of real numbers. The set S is **bounded** above if there is a number M, such that

$$x \leq M$$
 for all $x \in S$.

The number M is called an **upper bound** of S.

Definition 1.15.a) Let $S \subset \mathbb{R}$ be a non-empty set of real numbers. Suppose S is bounded above. The number β is the **supremum of** S if β is an upper bound of S and any number less than β is not an upper bound of S i.e.

for all $b < \beta$ there is an $x \in S$, such that b < x.

We will write $\beta = \sup(S)$.

Completeness Axiom: Each non-empty set $S \subset \mathbb{R}$ of real numbers that is bounded above has a supremum $\sup(S)$.