Math 35: Real Analysis
 Winter 2018

Friday $01 / 05 / 18$

Axioms for the real numbers

The following axioms define the real numbers completely. They are phrased as in the book.
Definition 1.1 A field is a non-empty set F of objects that has two operations defined on it. These operations are called addition and multiplication and are denoted in the usual way. Addition and multiplication satisfy the following properties:

Addition:

1. For all $x, y \in F, x+y \in F$.
2. For all $x, y \in F, x+y=y+x$. (commutative law)
3. For all $x, y, z \in F,(x+y)+z=x+(y+z)$. (associative law)
4. F contains an element 0 such that $x+0=x$ for all $x \in F$. (0 is the neutral element)
5. For all $x \in F$ there is $y \in F$, such that $x+y=0$. (inverse elements)

Note: Properties 1.-5. are equivalent to $(F,+)$ being a commutative group.

Multiplication:

6. For all $x, y \in F, x \cdot y \in F$.
7. For all $x, y \in F, x \cdot y=y \cdot x$. (commutative law)
8. For all $x, y, z \in F,(x \cdot y) \cdot z=x \cdot(y \cdot z)$. (associative law)
9. F contains an element $1 \neq 0$ such that $x \cdot 1=x$ for all $x \in F$. (1 is the neutral element)
10. For all $x \in F \backslash\{0\}$ there is $y \in F \backslash\{0\}$, such that $x \cdot y=1$. (inverse elements)

Distributive law:

11. For all $x, y, z \in F,(x+y) \cdot z=x \cdot z+y \cdot z$.

Note: Properties 6.-11. imply that $(F \backslash\{0\}, \cdot)$ is a group.

Math 35: Real Analysis
 Winter 2018

Definition 1.2 An order $<$ on a set S is a relation that satisfies the following two properties:

1. If $x, y \in S$ then exactly one of the three cases is true: $x<y, x=y$, or $x>y$.
2. For all $x, y, z \in S$: If $x<y$ and $y<z$ then $x<z$.

An ordered set is a set with an order $<$ defined on it.

Definition 1.3 An ordered field is a field F with an order $<$ with the following additional properties:

1. If $x>0$ and $y>0$ then $x+y>0$.
2. If $x>0$ and $y>0$ then $x \cdot y>0$.
3. $x<y$ if and only if $y-x>0$.

\mathbb{R} is an ordered field that additionally satisfies the Completeness Axiom.

Definition 1.14.a) Let $S \subset \mathbb{R}$ be a non-empty set of real numbers. The set S is bounded above if there is a number M, such that

$$
x \leq M \text { for all } x \in S
$$

The number M is called an upper bound of S.

Definition 1.15.a) Let $S \subset \mathbb{R}$ be a non-empty set of real numbers. Suppose S is bounded above. The number β is the supremum of S if β is an upper bound of S and any number less than β is not an upper bound of S i.e.

$$
\text { for all } b<\beta \text { there is an } x \in S \text {, such that } b<x \text {. }
$$

We will write $\beta=\sup (S)$.

Completeness Axiom: Each non-empty set $S \subset \mathbb{R}$ of real numbers that is bounded above has a supremum $\sup (S)$.

