MATH35 EXAM

Due date: Friday's class (Feb 10th 11:30am).
You can use textbook and notes for reference, but no discussion!

Problem 1: Let f be a continuous function on \mathbb{R} and $\left\{x_{k}\right\}_{k=1}^{\infty}$ is a Cauchy sequence. Prove that $\left\{f\left(x_{k}\right)\right\}_{k=1}^{\infty}$ is a Cauchy sequence as well.

Problem 2: Suppose that $\left\{x_{k}\right\}_{k=1}^{\infty}$ is an unbounded sequence but doesn't converge to infinity. Show that there are two subsequences $\left\{x_{p_{n}}\right\}$ and $\left\{x_{q_{n}}\right\}$ such that $\left\{x_{p_{n}}\right\}$ is convergent and $\lim _{n \rightarrow+\infty} x_{q_{n}}=\infty$ (that is, either $\lim _{n \rightarrow+\infty} x_{q_{n}}=$ $+\infty$ or $\left.\lim _{n \rightarrow+\infty} x_{q_{n}}=-\infty\right)$.

Problem 3: Suppose that $f(x)$ is a function on $(0,+\infty)$, satisfying that $f(2 x)=f(x)$. If $\lim _{x \rightarrow \infty} f(x)=A$, prove that

$$
f(x) \equiv A, \quad x \in(0,+\infty)
$$

Problem 4: Suppose that $f(x)$ is a continuous function on (a, b) such that

$$
\lim _{x \rightarrow a^{+}} f(x)=A, \quad \lim _{x \rightarrow b^{-}} f(x)=B
$$

Prove that $f(x)$ must be uniformly continuous.

Problem 5:

- Suppose that $\lim _{x \rightarrow 0} f\left(x^{3}\right)=A$, where A is a constant number. Prove that $\lim _{x \rightarrow 0} f(x)=A$.
- If $\lim _{x \rightarrow 0} f\left(x^{2}\right)=A$, can we still conclude that $\lim _{x \rightarrow 0} f(x)=A$? If YES, please prove it. Otherwise, please give one counter example.

