Math 35
Winter 2014
January 28
Work in a group of two or three people.
Exercise 1 The greatest integer function is defined in the textbook. The definition is:
$\lfloor x\rfloor$ is the greatest integer n such that $n \leq x$.
Intuitively, $\lfloor x\rfloor$ is the whole number part of x (at least for positive x). For example $\left\lfloor 1 \frac{1}{2}\right\rfloor=1$, $\lfloor 2\rfloor=2,\lfloor\pi\rfloor=3$, and $\lfloor-1.5\rfloor=-2$.

Let z be any real number. Find the limit L of the sequence

$$
\left\{\frac{\lfloor n z\rfloor}{n}\right\}
$$

(You need not prove anything yet.)
Solution: For any x, by the definition of $\lfloor x\rfloor$, we have $\lfloor x\rfloor \leq x$ and $\lfloor x\rfloor+1>x$. Subtracting 1 from both sides of the second inequality gives $\lfloor x\rfloor>x-1$. Putting these together,

$$
x-1<\lfloor x\rfloor \leq x
$$

Substituting $n z$ for x gives

$$
n z-1<\lfloor n z\rfloor \leq n z
$$

Dividing by n gives

$$
z-\frac{1}{n}<\frac{\lfloor n z\rfloor}{n} \leq z .
$$

From this we see that $L=z$.
Exercise 2: Prove the sequence of exercise 1 converges to the limit L in two different ways:

1. directly from the definition of convergence;
2. using the theorems stated in Chapter 2 of the textbook.

Proposition: For any real number z, the sequence $\left\{\frac{\lfloor n z\rfloor}{n}\right\}$ converges to z.
Proof 1: For any x, by the definition of $\lfloor x\rfloor$, we have $\lfloor x\rfloor \leq x$ and $\lfloor x\rfloor+1>x$. Subtracting 1 from both sides of the second inequality gives $\lfloor x\rfloor>x-1$. Putting these together,

$$
x-1<\lfloor x\rfloor \leq x .
$$

Substituting $n z$ for x gives

$$
n z-1<\lfloor n z\rfloor \leq n z .
$$

Dividing by n gives

$$
z-\frac{1}{n}<\frac{\lfloor n z\rfloor}{n} \leq z
$$

From this we see that $\left|\frac{\lfloor n z\rfloor}{n}-z\right|<\frac{1}{n}$.
Now, let $\varepsilon>0$ be given, and choose N such that $\frac{1}{N}<\varepsilon$. Then, for any $n \geq N$, we have

$$
\left|\frac{\lfloor n z\rfloor}{n}-z\right|<\frac{1}{n} \leq \frac{1}{N}<\varepsilon .
$$

This proves that $\left\{\frac{\lfloor n z\rfloor}{n}\right\}$ converges to z.
Proof 2: For any x, by the definition of $\lfloor x\rfloor$, we have $\lfloor x\rfloor \leq x$ and $\lfloor x\rfloor+1>x$. Subtracting 1 from both sides of the second inequality gives $\lfloor x\rfloor>x-1$. Putting these together,

$$
x-1<\lfloor x\rfloor \leq x .
$$

Substituting $n z$ for x gives

$$
n z-1<\lfloor n z\rfloor \leq n z .
$$

Dividing by n gives

$$
z-\frac{1}{n}<\frac{\lfloor n z\rfloor}{n} \leq z .
$$

The constant sequence $\{z\}$ converges to z. The sequence $\left\{\frac{1}{n}\right\}$ converges to 0 , so by Theorem 2.7 the sequence $\left\{z-\frac{1}{n}\right\}$ converges to $z-0$; that is, to z. Therefore, by the squeeze theorem, $\left\{\frac{\lfloor n z\rfloor}{n}\right\}$ also converges to z.

Exercise 3: Suppose that $\left\{x_{n}\right\}$ is a sequence, S is the set of subsequential limits of $\left\{x_{n}\right\}$, and $a \in S$. Prove that for every $\varepsilon>0$ and every N, there is an $n>N$ such that $\left|a-x_{n}\right|<\varepsilon$. (This is really a lemma for the next exercise.)

Lemma: Suppose that $\left\{x_{n}\right\}$ is a sequence, S is the set of subsequential limits of $\left\{x_{n}\right\}$, and $a \in S$. For every $\varepsilon>0$ and every N, there is an $n>N$ such that $\left|a-x_{n}\right|<\varepsilon$.

Proof: Let $\left\{x_{p(m)}\right\}$ be a subsequence converging to a. Choose M such that, for $m \geq M$, we have $\left|a-x_{p(m)}\right|<\varepsilon$. (This is possible by the definition of convergence.) Now choose m large enough so that $p(m)>\max \{M, N\}$. (This is possible because $\{p(m)\}$ is an increasing sequence.) Set $n=p(m)$.

Exercise 4: Suppose that $\left\{x_{n}\right\}$ is a sequence, S is the set of subsequential limits of $\left\{x_{n}\right\}$, and $\left\{a_{n}\right\}$ is a sequence of elements of S that converges to a. Prove that $a \in S$.

Proposition: Suppose that $\left\{x_{n}\right\}$ is a sequence, S is the set of subsequential limits of $\left\{x_{n}\right\}$, and $\left\{a_{n}\right\}$ is a sequence of elements of S that converges to a. Then $a \in S$.

Proof: Inductively define a subsequence $\left\{x_{p(n)}\right\}$ converging to a.
To guarantee $\left\{x_{p(n)}\right\}$ converges to a, it is enough to guarantee that, for all n, we have $\left|a-x_{p(n+1)}\right|<\frac{2}{n}$. (See the footnote. $\left.{ }^{1}\right)$

Set $p(1)=1$.
Suppose that $p(n)$ has been defined. We must choose $p(n+1)>p(n)$ such that $\left|a-x_{p(n+1)}\right|<\frac{2}{n}$.

Choose m such that $\left|a-a_{m}\right|<\frac{1}{n}$. This is possible because the sequence $\left\{a_{n}\right\}$ converges to a.

Now choose $k>p(n)$ such that $\left|a_{m}-x_{k}\right|<\frac{1}{n}$. This is possible by the lemma, with $N=p(n), \varepsilon=\frac{1}{n}$, and a_{m} in place of a.

By the triangle inequality, $\left|a-x_{k}\right| \leq\left|a-a_{m}\right|+\left|a_{m}-x_{k}\right|<\frac{2}{n}$.
Set $p(n+1)=k$. Then we have $p(n)=k<p(n+1)$ and $\left|a-x_{p(n+1)}\right|=\left|a-x_{k}\right|<\frac{2}{n}$, as required.

[^0]Exercise 5: Determine whether the sequences in part (a) converge. Find the limits of the sequences in part (b). Theorem 2.14 of the textbook may be useful.

Note: For these problems, I haven't always cited all the relevant theorems.
(a.)

$$
\{\sqrt{n+1}-\sqrt{n}\} \quad\left\{\frac{n!}{n^{n}}\right\}
$$

$$
\left\{\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n!}\right\}
$$

For the first sequence, we do a little algebra:

$$
\sqrt{n+1}-\sqrt{n}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{(\sqrt{n+1}+\sqrt{n})}=\frac{1}{\sqrt{n+1}+\sqrt{n}}
$$

which converges to 0 , because the denominator diverges to $+\infty$.
For the second sequence, we set $a_{n}=\frac{n!}{n^{n}}$, and derive a recurrence relation:

$$
a_{n+1}=\frac{(n+1)!}{(n+1)^{(n+1)}}=\frac{n!(n+1)}{(n+1)^{n}(n+1)}=\frac{n!\left(n^{n}\right)}{(n+1)^{n}\left(n^{n}\right)}=\frac{n^{n}}{(n+1)^{n}} \frac{n!}{n^{n}}=\left(\frac{n}{n+1}\right)^{n} a_{n}
$$

In particular, since all the terms a_{n} are positive and $\frac{n}{n+1}<1$, this shows $a_{n+1}<a_{n}$. That is, we have a decreasing sequence of positive numbers, which therefore converges.

For the third sequence, we set $a_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n!}$. We can see that all terms are positive, and that $a_{n+1}=\frac{2 n+1}{n+1} a_{n}$. Now, the sequence $\left\{\frac{2 n+1}{n+1}\right\}$ converges to 2 , so it is eventually always greater than $\frac{3}{2}$. That is, for some N, for all $n \geq N$ we have $a_{n+1}>\frac{3}{2} a_{n}$. From this we can show that, for $m \geq 1$, we have $a_{N+m}>\left(\frac{3}{2}\right)^{m} a_{N}$. Since by Theorem 2.14 the sequence $\left\{\left(\frac{3}{2}\right)^{m}\right\}$ diverges to ∞, so does our sequence.

$$
\begin{equation*}
\left\{(\sqrt[n]{n}-1)^{n}\right\} \quad\left\{\sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k}}\right\} \quad\left\{\frac{2^{n}+n^{2}}{5^{n}-n}\right\} \tag{b.}
\end{equation*}
$$

For the first sequence, we can see the terms are positive. By Theorem 2.14 we know that $\{\sqrt[n]{n}\}$ converges to 1 , so $\{\sqrt[n]{n}-1\}$ converges to 0 , so for large enough n we have $0<\sqrt[n]{n}-1<\frac{1}{2}$, and $0<(\sqrt[n]{n}-1)^{n}<\frac{1}{2^{n}}$. Since (by the same theorem) the sequence $\left\{\frac{1}{2^{n}}\right\}$ converges to 0 , so, by the squeeze theorem, does our sequence.

For the second sequence, consider a fixed n.
For $1 \leq k \leq n$, we have $n<\sqrt{n^{2}+k} \leq \sqrt{n^{2}+n}$, so $\frac{1}{\sqrt{n^{2}+n}} \leq \frac{1}{\sqrt{n^{2}+k}}<\frac{1}{n}$, and

$$
\sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+n}} \leq \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k}} \leq \sum_{k=1}^{n} \frac{1}{n}
$$

The terms in the lefthand and righthand sums do not depend on k, so we have

$$
\frac{n}{\sqrt{n^{2}+n}} \leq \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k}} \leq \frac{n}{n}
$$

The righthand term equals 1 , and the lefthand term equals $\sqrt{\frac{n}{n+1}}$, which converges to 1 as n approaches ∞. Therefore, our sequence converges to 1 .

For the third sequence, we can rewrite

$$
\frac{2^{n}+n^{2}}{5^{n}-n}=\frac{\left(\frac{2}{5}\right)^{n}-n^{2} 5^{-n}}{1-n 5^{-n}}
$$

Since $\left\{\left(\frac{2}{5}\right)^{n}\right\}$ converges to 0 , to show our sequence converges to 0 as well, we need only show that the sequences $\left\{n 5^{-n}\right\}$ and $\left\{n^{2} 5^{-n}\right\}$ converge to 0 .

We can do this by a method similar to the one we used for the third sequence of part (a): Let $a_{n}=n^{2} 5^{-n}$. Then $a_{n+1}=\frac{1}{5}\left(\frac{n+1}{n}\right)^{2} a_{n}$. Since the sequence $\left\{\frac{1}{5}\left(\frac{n+1}{n}\right)^{2}\right\}$ converges to $\frac{1}{5}$, it is eventually less than $\frac{1}{2}$. Then, by an argument like our previous one, there is some N such that $a_{N+m} \leq\left(\frac{1}{2}\right)^{m} a_{N}$ for all $m \geq 1$, and since the sequence $\left\{\left(\frac{1}{2}\right)^{m}\right\}$ converges to 0 , so does $\left\{a_{n}\right\}$.

To prove $\left\{a_{n}\right\}$ converges, directly from the definition of convergence:
Proposition: The sequence $\left\{a_{n}\right\}$ converges to L.
[You get to choose L. Of course, you choose L to be the limit of the sequence.]
Proof: Let $\varepsilon>0$.
[You don't get to choose ε. Your argument must work for every $\varepsilon>0$.]
Define N to be \qquad .
[You get to define N. Generally, the definition of N will depend on ε.]
Let $n \geq N$.
[You don't get to choose n. Your argument must work for every $n \geq N$.]
We will prove $\left|a_{n}-L\right|<\varepsilon$.
[Now you have to prove this.]

To prove $\left\{a_{n}\right\}$ diverges, directly from the definition of divergence:
Proposition: The sequence $\left\{a_{n}\right\}$ diverges.
Proof: Let L be a real number.
[You don't get to choose L. Your argument must work for every L. Division into cases is common here.]

Define ε to be \qquad .
[You get to define ε; you must have $\varepsilon>0$. Generally, the definition of ε will depend on L.]

Let N be any number
[You don't get to choose N. Your argument must work for every N.]
Define n to be \qquad .
[You get to define n; you must have $n \geq N$. Generally, the definition of n will depend on N and L.]
We will prove $\left|a_{n}-L\right| \geq \varepsilon$.
[Now you have to prove this.]
[These last two steps can be combined: "We will prove there is an $n \geq N$ such that $\left|a_{n}-L\right| \geq \varepsilon$." Doing this allows you to use, for example, proof by contradiction, without trying to figure out exactly what n should be.]

[^0]: ${ }^{1}$ There is nothing magic about $\frac{2}{n}$. Anything that approaches 0 as n approaches ∞ would suffice.

