Math 35
Winter 2014
January 28

Work in a group of two or three people.
Exercise 1 The greatest integer function is defined in the textbook. The definition is:

| x| is the greatest integer n such that n < x.

Intuitively, |z is the whole number part of z (at least for positive z). For example [13] =1,
2] =2, 7] =3, and |—1.5] = —2.
Let z be any real number. Find the limit L of the sequence

&

Solution: For any z, by the definition of |z |, we have |z| < z and [z]+1 > z. Subtracting
1 from both sides of the second inequality gives |x| > x — 1. Putting these together,

(You need not prove anything yet.)

r—1<|z] <=z

Substituting nz for x gives
nz—1<|nz| <nz.

Dividing by n gives

1 |nz|
- <
n n

z— < z.

From this we see that L = z.
Exercise 2: Prove the sequence of exercise 1 converges to the limit L in two different ways:
1. directly from the definition of convergence;

2. using the theorems stated in Chapter 2 of the textbook.



Proposition: For any real number z, the sequence {%} converges to z.

Proof 1: For any x, by the definition of |z], we have |z] < x and |z] +1 > 2. Subtracting
1 from both sides of the second inequality gives |x] > x — 1. Putting these together,

r—1<|z] <z

Substituting nz for x gives

Dividing by n gives

From this we see that

n'

Now, let € > 0 be given, and choose N such that % < &. Then, for any n > N, we have

|nz] _ 1 < 1 _.
—zl< =< = :
n n- N
This proves that {Ln—nzj} converges to z. O]

Proof 2: For any x, by the definition of |z], we have |z] < x and |z] +1 > . Subtracting
1 from both sides of the second inequality gives |x| > x — 1. Putting these together,

r—1<l|z] <z

Substituting nz for x gives
nz—1<|nz|] <nz.

Dividing by n gives
1 [nz]
z——<
n n

< z.

The constant sequence {z} converges to z. The sequence {%} converges to 0, so by
Theorem 2.7 the sequence {z — %} converges to z — 0; that is, to z. Therefore, by the

squeeze theorem, { V;ZJ

} also converges to z. O



Exercise 3: Suppose that {z,} is a sequence, S is the set of subsequential limits of {x,},
and a € S. Prove that for every € > 0 and every N, there is an n > N such that |a —x,| < €.
(This is really a lemma for the next exercise.)

Lemma: Suppose that {x,} is a sequence, S is the set of subsequential limits of {x,}, and
a € S. For every € > 0 and every N, there is an n > N such that |a — z,,| < e.

Proof: Let {z,u,)} be a subsequence converging to a. Choose M such that, for m > M,
we have |a — Zp(m)| < . (This is possible by the definition of convergence.) Now choose m
large enough so that p(m) > max{M, N}. (This is possible because {p(m)} is an increasing
sequence.) Set n = p(m). O

Exercise 4: Suppose that {z,} is a sequence, S is the set of subsequential limits of {z,},
and {a,} is a sequence of elements of S that converges to a. Prove that a € S.

Proposition: Suppose that {z,} is a sequence, S is the set of subsequential limits of {z,},
and {a,} is a sequence of elements of S that converges to a. Then a € S.

Proof: Inductively define a subsequence {z,(,)} converging to a.
To guarantee {,(,)} converges to a, it is enough to guarantee that, for all n, we have

2
@ — @pan| < — (See the footnote.!)

Set p(1) = 1.
Suppose that p(n) has been defined. We must choose p(n + 1) > p(n) such that

}a - xp(n+1)‘ < n

1
Choose m such that |a — a,,| < —. This is possible because the sequence {a,} converges
n
to a.

1
Now choose k > p(n) such that |a,, —zx| < —. This is possible by the lemma, with
n
1
N =p(n), e = —, and a,, in place of a.
n
2
By the triangle inequality, |a — x| < |a — ap| + |am — x| < —.
n

Set p(n + 1) = k. Then we have p(n) =k < p(n + 1) and |a — zpp41)| = |a — 2] <

D3“| N}

as required.

2
!There is nothing magic about —. Anything that approaches 0 as n approaches co would suffice.
n



Exercise 5: Determine whether the sequences in part (a) converge. Find the limits of the
sequences in part (b). Theorem 2.14 of the textbook may be useful.

Note: For these problems, I haven'’t always cited all the relevant theorems.

(a.) (Vi 1- ) {&'} {1-3-5---(277,—1)}

nn n!

For the first sequence, we do a little algebra:

W_\/ﬁ:(\/n——l-l—\/ﬁ)(\/n—ﬂ—i—\/ﬁ) 1

(Vn+ 1+ ) VIR

which converges to 0, because the denominator diverges to +o0.

n! . .
For the second sequence, we set a, = —, and derive a recurrence relation:
n

(n+1)! nl(n+1) nl(n") nt o —( - )nan‘

- - B n+ 1

B Y e R S I SN R O 0 R S

n
In particular, since all the terms a,, are positive and 7 < 1, this shows a,+1 < a,. That

n+
is, we have a decreasing sequence of positive numbers, which therefore converges.

1-3-5---(2n—1)

' . We can see that all terms are
n!

2n+1 o
] } converges to 2, so it is

For the third sequence, we set a, =
2n +1
n+1

positive, and that a,,; = a,. Now, the sequence {

n+

eventually always greater than —. That is, for some N, for all n > N we have a, 1 > 3 .-
3 m

From this we can show that, for m > 1, we have ani,, > 5) ay. Since by Theorem 2.14

3\ ..
the sequence 5 diverges to oo, so does our sequence.



G oF - B =y

For the first sequence, we can see the terms are positive. By Theorem 2.14 we know
that {{/n} converges to 1, so {{/n — 1} converges to 0, so for large enough n we have
1 1
0< ¥Yn—1< 3 and 0 < ({/n—1)" < o Since (by the same theorem) the sequence
1

{Q—H} converges to 0, so, by the squeeze theorem, does our sequence.

For the second sequence, consider a fixed n.

1 1 1
For 1 <k <n, we have n < vn2 +k < vn2?+n, so

< < —, and
Vn2+n T Vn2+k n

& 1 & 1 "1
— < — < —.
2 S Ve S
The terms in the lefthand and righthand sums do not depend on k, so we have

n
n .

oy L
vni+n o vni+k

The righthand term equals 1, and the lefthand term equals which converges to 1

n+1’
as n approaches co. Therefore, our sequence converges to 1.

For the third sequence, we can rewrite

2" +n? (%)n —n25m

5" —n 1 —nd™m

2 n
Since { (5) } converges to 0, to show our sequence converges to 0 as well, we need only

show that the sequences {n5"} and {n?5~"} converge to 0.
We can do this by a method similar to the one we used for the third sequence of part (a):

1 1\? 1 1\?
Let a,, = n?5™™. Then a,.; = - (n + ) a,. Since the sequence {— (n i ) } converges

5 n 5 n

1
to —, it is eventually less than —. Then, by an argument like our previous one, there is some

n\" n\"
N such that ayim, < (5) ay for all m > 1, and since the sequence {(5) } converges

to 0, so does {a,}.



To prove {a,} converges, directly from the definition of convergence:

Proposition: The sequence {a,} converges to L.
[You get to choose L. Of course, you choose L to be the limit of the sequence.]

Proof: Let £ > 0.
[You don’t get to choose . Your argument must work for every € > 0.]

Define N to be .
[You get to define N. Generally, the definition of N will depend on ¢.]

Let n > N.
[You don’t get to choose n. Your argument must work for every n > N.]

We will prove |a, — L| < e.
[Now you have to prove this.]

To prove {a,} diverges, directly from the definition of divergence:
Proposition: The sequence {a,} diverges.

Proof: Let L be a real number.
[You don’t get to choose L. Your argument must work for every L. Division into cases
is common here.]

Define € to be .
[You get to define €; you must have € > 0. Generally, the definition of ¢ will depend on
L.]

Let N be any number
[You don’t get to choose N. Your argument must work for every N.]

Define n to be .
[You get to define n; you must have n > N. Generally, the definition of n will depend on
N and L.]

We will prove |a, — L| > «.
[Now you have to prove this.]

[These last two steps can be combined: “We will prove there is an n > N such that
la, — L| > €.” Doing this allows you to use, for example, proof by contradiction, without
trying to figure out exactly what n should be.]



