
Math 35
Winter 2014
January 28

Work in a group of two or three people.

Exercise 1 The greatest integer function is defined in the textbook. The definition is:

bxc is the greatest integer n such that n ≤ x.

Intuitively, bxc is the whole number part of x (at least for positive x). For example b11
2
c = 1,

b2c = 2, bπc = 3, and b−1.5c = −2.
Let z be any real number. Find the limit L of the sequence{

bnzc
n

}
(You need not prove anything yet.)

Solution: For any x, by the definition of bxc, we have bxc ≤ x and bxc+1 > x. Subtracting
1 from both sides of the second inequality gives bxc > x− 1. Putting these together,

x− 1 < bxc ≤ x.

Substituting nz for x gives
nz − 1 < bnzc ≤ nz.

Dividing by n gives

z − 1

n
<
bnzc
n
≤ z.

From this we see that L = z.

Exercise 2: Prove the sequence of exercise 1 converges to the limit L in two different ways:

1. directly from the definition of convergence;

2. using the theorems stated in Chapter 2 of the textbook.
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Proposition: For any real number z, the sequence
{
bnzc

n

}
converges to z.

Proof 1: For any x, by the definition of bxc, we have bxc ≤ x and bxc+ 1 > x. Subtracting
1 from both sides of the second inequality gives bxc > x− 1. Putting these together,

x− 1 < bxc ≤ x.

Substituting nz for x gives
nz − 1 < bnzc ≤ nz.

Dividing by n gives

z − 1

n
<
bnzc
n
≤ z.

From this we see that
∣∣∣ bnzc

n
− z
∣∣∣ < 1

n
.

Now, let ε > 0 be given, and choose N such that 1
N
< ε. Then, for any n ≥ N , we have∣∣∣∣bnzcn − z

∣∣∣∣ < 1

n
≤ 1

N
< ε.

This proves that
{
bnzc

n

}
converges to z.

Proof 2: For any x, by the definition of bxc, we have bxc ≤ x and bxc+ 1 > x. Subtracting
1 from both sides of the second inequality gives bxc > x− 1. Putting these together,

x− 1 < bxc ≤ x.

Substituting nz for x gives
nz − 1 < bnzc ≤ nz.

Dividing by n gives

z − 1

n
<
bnzc
n
≤ z.

The constant sequence {z} converges to z. The sequence
{

1
n

}
converges to 0, so by

Theorem 2.7 the sequence
{
z − 1

n

}
converges to z − 0; that is, to z. Therefore, by the

squeeze theorem,
{
bnzc

n

}
also converges to z.
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Exercise 3: Suppose that {xn} is a sequence, S is the set of subsequential limits of {xn},
and a ∈ S. Prove that for every ε > 0 and every N , there is an n > N such that |a−xn| < ε.
(This is really a lemma for the next exercise.)

Lemma: Suppose that {xn} is a sequence, S is the set of subsequential limits of {xn}, and
a ∈ S. For every ε > 0 and every N , there is an n > N such that |a− xn| < ε.

Proof: Let {xp(m)} be a subsequence converging to a. Choose M such that, for m ≥ M ,
we have |a − xp(m)| < ε. (This is possible by the definition of convergence.) Now choose m
large enough so that p(m) > max{M,N}. (This is possible because {p(m)} is an increasing
sequence.) Set n = p(m).

Exercise 4: Suppose that {xn} is a sequence, S is the set of subsequential limits of {xn},
and {an} is a sequence of elements of S that converges to a. Prove that a ∈ S.

Proposition: Suppose that {xn} is a sequence, S is the set of subsequential limits of {xn},
and {an} is a sequence of elements of S that converges to a. Then a ∈ S.

Proof: Inductively define a subsequence {xp(n)} converging to a.
To guarantee {xp(n)} converges to a, it is enough to guarantee that, for all n, we have∣∣a− xp(n+1)

∣∣ < 2

n
. (See the footnote.1)

Set p(1) = 1.
Suppose that p(n) has been defined. We must choose p(n + 1) > p(n) such that∣∣a− xp(n+1)

∣∣ < 2

n
.

Choose m such that |a− am| <
1

n
. This is possible because the sequence {an} converges

to a.

Now choose k > p(n) such that |am − xk| <
1

n
. This is possible by the lemma, with

N = p(n), ε =
1

n
, and am in place of a.

By the triangle inequality, |a− xk| ≤ |a− am|+ |am − xk| <
2

n
.

Set p(n + 1) = k. Then we have p(n) = k < p(n + 1) and
∣∣a− xp(n+1)

∣∣ = |a− xk| <
2

n
,

as required.

1There is nothing magic about
2
n

. Anything that approaches 0 as n approaches ∞ would suffice.
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Exercise 5: Determine whether the sequences in part (a) converge. Find the limits of the
sequences in part (b). Theorem 2.14 of the textbook may be useful.

Note: For these problems, I haven’t always cited all the relevant theorems.

(a.)
{√

n+ 1−
√
n
} {

n!

nn

} {
1 · 3 · 5 · · · (2n− 1)

n!

}
For the first sequence, we do a little algebra:

√
n+ 1−

√
n =

(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)

(
√
n+ 1 +

√
n)

=
1√

n+ 1 +
√
n
,

which converges to 0, because the denominator diverges to +∞.

For the second sequence, we set an =
n!

nn
, and derive a recurrence relation:

an+1 =
(n+ 1)!

(n+ 1)(n+1)
=

n!(n+ 1)

(n+ 1)n(n+ 1)
=

n!(nn)

(n+ 1)n(nn)
=

nn

(n+ 1)n

n!

nn
=

(
n

n+ 1

)n

an.

In particular, since all the terms an are positive and
n

n+ 1
< 1, this shows an+1 < an. That

is, we have a decreasing sequence of positive numbers, which therefore converges.

For the third sequence, we set an =
1 · 3 · 5 · · · (2n− 1)

n!
. We can see that all terms are

positive, and that an+1 =
2n+ 1

n+ 1
an. Now, the sequence

{
2n+ 1

n+ 1

}
converges to 2, so it is

eventually always greater than
3

2
. That is, for some N , for all n ≥ N we have an+1 >

3

2
an.

From this we can show that, for m ≥ 1, we have aN+m >

(
3

2

)m

aN . Since by Theorem 2.14

the sequence

{(
3

2

)m}
diverges to ∞, so does our sequence.
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(b.) {( n
√
n− 1)n}

{
n∑

k=1

1√
n2 + k

} {
2n + n2

5n − n

}
For the first sequence, we can see the terms are positive. By Theorem 2.14 we know

that { n
√
n} converges to 1, so { n

√
n− 1} converges to 0, so for large enough n we have

0 < n
√
n − 1 <

1

2
, and 0 < ( n

√
n − 1)n <

1

2n
. Since (by the same theorem) the sequence{

1

2n

}
converges to 0, so, by the squeeze theorem, does our sequence.

For the second sequence, consider a fixed n.

For 1 ≤ k ≤ n, we have n <
√
n2 + k ≤

√
n2 + n, so

1√
n2 + n

≤ 1√
n2 + k

<
1

n
, and

n∑
k=1

1√
n2 + n

≤
n∑

k=1

1√
n2 + k

≤
n∑

k=1

1

n
.

The terms in the lefthand and righthand sums do not depend on k, so we have

n√
n2 + n

≤
n∑

k=1

1√
n2 + k

≤ n

n
.

The righthand term equals 1, and the lefthand term equals

√
n

n+ 1
, which converges to 1

as n approaches ∞. Therefore, our sequence converges to 1.

For the third sequence, we can rewrite

2n + n2

5n − n
=

(
2
5

)n − n25−n

1− n5−n
.

Since

{(
2

5

)n}
converges to 0, to show our sequence converges to 0 as well, we need only

show that the sequences {n5−n} and {n25−n} converge to 0.
We can do this by a method similar to the one we used for the third sequence of part (a):

Let an = n25−n. Then an+1 =
1

5

(
n+ 1

n

)2

an. Since the sequence

{
1

5

(
n+ 1

n

)2
}

converges

to
1

5
, it is eventually less than

1

2
. Then, by an argument like our previous one, there is some

N such that aN+m ≤
(

1

2

)m

aN for all m ≥ 1, and since the sequence

{(
1

2

)m}
converges

to 0, so does {an}.
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To prove {an} converges, directly from the definition of convergence:

Proposition: The sequence {an} converges to L.
[You get to choose L. Of course, you choose L to be the limit of the sequence.]

Proof: Let ε > 0.
[You don’t get to choose ε. Your argument must work for every ε > 0.]

Define N to be .
[You get to define N . Generally, the definition of N will depend on ε.]

Let n ≥ N .
[You don’t get to choose n. Your argument must work for every n ≥ N .]

We will prove |an − L| < ε.
[Now you have to prove this.]

To prove {an} diverges, directly from the definition of divergence:

Proposition: The sequence {an} diverges.

Proof: Let L be a real number.
[You don’t get to choose L. Your argument must work for every L. Division into cases

is common here.]

Define ε to be .
[You get to define ε; you must have ε > 0. Generally, the definition of ε will depend on

L.]

Let N be any number
[You don’t get to choose N . Your argument must work for every N .]

Define n to be .
[You get to define n; you must have n ≥ N . Generally, the definition of n will depend on

N and L.]

We will prove |an − L| ≥ ε.
[Now you have to prove this.]

[These last two steps can be combined: “We will prove there is an n ≥ N such that
|an − L| ≥ ε.” Doing this allows you to use, for example, proof by contradiction, without
trying to figure out exactly what n should be.]
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