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Yesterday you were trying to prove that the set of natural numbers, Z+, has no upper
bound.

This proof uses the completeness axiom, which says that any nonempty set with an upper
bound has a least upper bound.

We can use this to prove Z+ has no upper bound, by showing it has no least upper bound.
We can show Z+ has no least upper bound by assuming it does, and deriving a contra-

diction.

Proposition: The set Z+ of natural numbers has no upper bound.

Proof: We prove this by contradiction.
Suppose Z+ has an upper bound. By the completeness axiom, Z+ has a least upper

bound. Let r be the least upper bound of Z+.
Then r− 1

2
is not an upper bound for Z+, which means there is a natural number n such

that n > r − 1
2
.

Adding 1 to both sides of this inequality gives us n + 1 > r + 1
2
. But then n + 1 is a

natural number greater than r, contradicting the fact that r is an upper bound of Z+.
This completes the proof.

Another way to use the completeness axiom is to show a number with a certain property
exists, by showing the least upper bound of some set X (that is nonempty and bounded
above) has that property. Here is an example. Prove the following in the opposite order;
that is, first prove (3), for which you may use (1) and (2). Then prove (2), and then prove (1).
You may use any basic properties of +, ·, and < that hold in ordered fields. In particular,
you may use the fact that if x and y are non-negative real numbers, then x < y iff x2 < y2.

1. If a > 0, then there is x > 0 such that x2 < a, and there is y > 0 such that y2 > a.

If it helps, you may consider the cases a < 1, a = 1, and a > 1 separately. For a = 1,
you can give specific values for x and y.

2. If a > 0 and b > 0, then

(a) If b2 < a, then there is h > 0 such that (b + h)2 < a.

(b) If b2 > a, then there is h > 0 such that h < b and (b− h)2 > a.

For (a), try setting ε = a − b2, and finding h such that (b + h)2 − b2 < ε. (Note that
ε > 0.)

3. If a > 0, then the completeness axiom implies that there is b > 0 such that b2 = a.

Hint: Consider the set X = {x | 0 < x & x2 < a}.
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For (3), consider X = {x | 0 < x & x2 < a}. By (1), there is a positive x such that
x2 < a, so X 6= ∅. By (1), there is a positive number y such that y2 > a. Any such number y
is an upper bound for X. (To see this suppose x ∈ X. Then x is positive, and x2 < a < y2.
Therefore x < y.)

By the completeness axiom, since X is nonempty and bounded above, X has a least
upper bound b. We will show that b2 = a, by showing that both assumptions b2 < a and
b2 > a lead to contradictions.

First suppose b2 < a. By (2a), there is b + h > b such that (b + h)2 < a. But then
b + h ∈ X, contradicting the fact that b is an upper bound for X.

Now suppose b2 > a. By (2b), there is a positive b− h < b such that (b− h)2 > a. But
we have already argued that any positive number whose square is greater than a is an upper
bound for X, so this contradicts the fact that b is the least upper bound for X.

This completes the proof of (3).

For (2a), we have a− b2 = ε > 0, and we want to find h > 0 such that (b + h)2 − b2 < ε.
We have

(b + h)2 − b2 = 2bh + h2 = h(2b + h).

If we choose h so that h < 1, then we will have h(2b + h) < h(2b + 1). If we choose h so that
h < ε

2b+1
, we will have h(2b + 1) < ε.

Therefore, if we choose any positive h < min{1, ε
2b+1
}, we will have

(b + h)2 − b2 = 2bh + h2 = h(2b + h) < h(2b + 1) <
ε

2b + 1
(2b + 1) = ε = a− b2,

so (adding b2 to both sides) (b + h)2 < a.
This completes the proof of 2(a).
(2b) is similar.

For (1), notice that (a + 1)2 = a2 + a + a + 1 > a, and if a < 1 then (multiplying by a

on both sides) a2 < a. If a ≥ 1, of course,
(

1
2

)2
< a.
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Recall that mathematical induction is used to prove a statement of the form, “For every
natural number n, P (n).” The proof then has two steps:

Base Case: Prove P (1).

Inductive Step: Assume that n is a natural number such that P (n). (This is the
inductive hypothesis.) Prove P (n + 1).

(In other words, prove that for any natural number n, if P (n), then P (n + 1).)

This works, because once we prove both P (1) and (P (n) =⇒ P (n + 1)), it follows
that P (2). From P (2) and (P (n) =⇒ P (n + 1)), it follows that P (3). From P (3) and
(P (n) =⇒ P (n + 1)), it follows that. . .

In this way, all the natural numbers fall into line like dominoes, and we conclude that
P (n) holds for every natural number n.

For example, a homework problem asks us to prove by induction that the set of natural
numbers is closed under addition. To set up the proof, we follow these steps:

1. Reword the proposition so that the thing to be proved is of the form “for every natural
number n, P (n).”

2. State that we will prove this by induction (or, if there are several variables in the
statement of the proposition, “by induction on n”).

3. State the base case. (say what we need to prove.

4. State the inductive step. (Say what we assume as inductive hypothesis, and what we
need to prove.)

Then, once the proof is set up, we can fill in the proofs. (Yes, that’s the hard part.)
Warning: For this homework problem, to prove something is a natural number, you must

use the fact that the natural numbers are closed under adding 1. That is, to prove a is a
natural number, you must write a in the form b+1 for some b that is already known (proven
or assumed) to be a natural number.

In particular, it is not sufficient to prove a > 0. (All natural numbers are greater than
zero, but so are many other real numbers.) Nor is it sufficient to give an intuitive argument
about “fractional parts.” You must use induction, and the fact that the natural numbers
are closed under adding 1.
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Example: Prove that every finite set of real numbers is bounded.

Proposition: For every natural number n, every set of real numbers with exactly n elements
is bounded.

Proof: We prove this by induction on n.

Base Case: We must prove that every set of real numbers with exactly 1 element is bounded.

To prove this, suppose that X = {x1}. To show X is bounded, we must find a number
M such that |x| ≤M for all x ∈ X. Clearly M = |x1| works.

Inductive Step: Assume that every set of real numbers with exactly n elements is bounded.
This is the inductive hypothesis.

We must prove that every set of real numbers with exactly n + 1 elements is bounded.

To prove this, suppose that X = {x1, x2, . . . , xn+1}. To show X is bounded, we must find
a number M such that |x| ≤M for all x ∈ X.

Let Y = {x1, x2, . . . , xn}. By inductive hypothesis, Y is bounded. That is, there is some
number P such that |x| ≤ P for all x ∈ Y .

Let M = max{P, |xn+1|}. To show M works, suppose that x ∈ X. Either x ∈ Y , in
which case |x| ≤ P ≤ M , or x = xn+1, in which case |x| = |xn+1| ≤ M . This shows that
|x| ≤M for all x ∈ X, which shows that X is bounded.

This completes the proof.

Notes:

1. The underlined portion of the statement of the proposition is my P (n). Notice that
I repeated the exact same wording (except that n is sometimes replaced by 1, and
sometimes by n + 1) in all the underlined portions of the proof. This can really help
organize your proof.

2. Appropriate notation can make life easier. For example, denoting a set of n+1 elements
by {x1, x2, . . . , xn+1} makes the main idea of the inductive step much easier to see.

3. Notice the phrases that help the reader follow the logic: “we must show . . . ,” “to show
. . . , we must . . . ,” “to show . . . , suppose . . . ,” “this shows that . . . ,” “by inductive
hypothesis, . . . ,” ‘that is, . . . ,” and so on. Words like “because” and “therefore” are
extremely useful.

4. Saying both “To show X is bounded, we must find a number M such that |x| ≤M for
all x ∈ X,” at the beginning of the inductive step, and “This shows that |x| ≤ M for
all x ∈ X, which shows that X is bounded,” at the end of the inductive step, might
seem unnecessarily repetitious. Being repetitious in order to make a proof easier to
follow is not only allowed, it’s encouraged.
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